已知拋物線y2=2px(p>0)的焦點(diǎn)為F,過F且斜率為
3
直線與拋物線在x軸上方的交點(diǎn)為M,過M作y軸的垂線,垂足為N,O為坐標(biāo)原點(diǎn),若四邊形OFMN的面積為4
3

(1)求拋物線的方程;
(2)若P,Q是拋物線上異于原點(diǎn)O的兩動點(diǎn),且以線段PQ為直徑的圓恒過原點(diǎn)O,求證:直線PQ過定點(diǎn),并指出定點(diǎn)坐標(biāo).
(1)∵拋物線y2=2px(p>0)的焦點(diǎn)為F(
p
2
,0),
∴過F且斜率為
3
直線方程為y=
3
(x-
p
2
)
,
聯(lián)立
y2=2px
y=
3
(x-
p
2
)
,得12x2-20px+3p2=0,
解得x=
3
2
p
,或x=
p
6
,
∵直線與拋物線在x軸上方的交點(diǎn)為M,
∴M(
3
2
p,
3
p
),
∵過M作y軸的垂線,垂足為N,O為坐標(biāo)原點(diǎn),四邊形OFMN的面積為4
3
,
1
2
(
p
2
+
3p
2
3
p
=4
3
,解得p=2,
∴拋物線的方程y2=4x.
(2)證明:①當(dāng)直線PQ的斜率不存在時,設(shè)直線PQ的方程為y=x0,x0>0,
則x0=2
x0
,解得x0=4,直線PQ過定點(diǎn)(4,0).
②當(dāng)直線PQ的斜率存在時,假設(shè)直線直線PQ過定點(diǎn)(4,0),則設(shè)直線PQ的方程為y=k(x-4),
聯(lián)立
y2=4x
y=k(x-4)
,得k2x2-(8k2+4)x+16k2=0,
設(shè)P(x1,y1),Q(x2,y2),則x1+x2=8+
4
k2
,x1x2=16,
∴y1+y2=k(x1-4)+k(x2-4)=k(8+
4
k2
)-8k=
4
k

y1y2=k(x1-4)•k(x2-4)
=k2[x1x2-4(x1+x2)+16]
=k2[16-4(8+
4
k2
)+16]=-16.
∴|PQ|=
(x1-x2)2+(y1-y2)2

=
[(x1+x2)2-4x1x2]+[(y1+y2)2-4y1y2]

=
(8+
4
k2
)2-4×16+(
4
k
)2-4×(-16)

=2
4
k4
+
20
k2
+16

∵線段PQ的中點(diǎn)A(4+
2
k2
,
2
k
),
∴|AO|=
(4+
2
k2
)2+(
2
k
)2
=
4
k4
+
20
k2
+16

∴以線段PQ為直徑的圓恒過原點(diǎn)O.
即假設(shè)成立,故直線PQ恒過定點(diǎn)(4,0).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若點(diǎn)P到點(diǎn)F(
1
2
,0)的距離與它到直線x+
1
2
=0的距離相等.
(1)求P點(diǎn)軌跡方程C,
(2)A點(diǎn)是曲線C上橫坐標(biāo)為8且在X軸上方的點(diǎn),過A點(diǎn)且斜率為1的直線l與C的另一個交點(diǎn)為B,求C與l所圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)B(6,0)和點(diǎn)C(-6,0),過點(diǎn)B的直線l與過點(diǎn)C的直線m相交于點(diǎn)A,設(shè)直線l的斜率為k1,直線m的斜率為k2
(1)如果k1•k2=-
4
9
,求點(diǎn)A的軌跡方程,并寫出此軌跡曲線的焦點(diǎn)坐標(biāo);
(2)如果k1•k2=
4
9
,求點(diǎn)A的軌跡方程,并寫出此軌跡曲線的離心率;
(3)如果k1•k2=k(k≠0,k≠-1),根據(jù)(1)和(2),你能得到什么結(jié)論?(不需要證明所得結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓mx2+ny2=1,直線y=x+1與該橢圓相交于P和Q兩點(diǎn),且OP⊥OQ,|PQ|=
10
2
,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過拋物線y2=2px(p>0)的焦點(diǎn)F作直線與拋物線交于A、B兩點(diǎn),以AB為直徑的圓與拋物線的準(zhǔn)線的位置關(guān)系是( 。
A.相交B.相切
C.相離D.與p的取值相關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓的離心率為
2
2
,F(xiàn)1,F(xiàn)2為其焦點(diǎn),一直線過點(diǎn)F1與橢圓相交于A、B兩點(diǎn),且△F2AB的最大面積為
2
,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定點(diǎn)F(2,0),動圓P經(jīng)過點(diǎn)F且與直線x=-2相切,記動圓的圓心P的軌跡為C.
(Ⅰ)求軌跡C的方程;
(Ⅱ)過點(diǎn)F作傾斜角為60°的直線l與軌跡C交于A(x1,y1)、B(x1,y2)兩點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)M為軌跡C上一點(diǎn),若向量
OM
=
OA
OB
,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線C:y2=2px(p>0)上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)直線y=kx+b與拋物線C交于兩點(diǎn)A(x1,y1),B(x2,y2),且|y1-y2|=a(a為正常數(shù)).過弦AB的中點(diǎn)M作平行于x軸的直線交拋物線C于點(diǎn)D,連接AD、BD得到△ABD.
(i)求實數(shù)a,b,k滿足的等量關(guān)系;
(ii)△ABD的面積是否為定值?若為定值,求出此定值;若不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)為F1(-1,0),離心率為
2
2

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過點(diǎn)F且不與坐標(biāo)軸垂直的直線l交橢圓于A,B兩點(diǎn),線段AB的垂直平分線與x軸交于點(diǎn)G,求點(diǎn)G的橫坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案