已知
(Ⅰ)若,求的表達(dá)式;
(Ⅱ)若函數(shù)和函數(shù)的圖象關(guān)于原點(diǎn)對稱,求函數(shù)的解析式;
(Ⅲ)若在上是增函數(shù),求實(shí)數(shù)的取值范圍.
(1)f(x)=sin2x+2sinx
(2)g(x)= -sin2x+2sinx
(3) .
解析試題分析:(1)
=2+sinx-C.os2x-1+sinx=sin2x+2sinx
(2)設(shè)函數(shù)y="f" (x)的圖象上任一點(diǎn)M(x0,y0)關(guān)于原點(diǎn)的對稱點(diǎn)為N(x,y)
則x0= -x,y0= -y
∵點(diǎn)M在函數(shù)y="f" (x)的圖象上
,即y= -sin2x+2sinx
∴函數(shù)g(x)的解析式為g(x)= -sin2x+2sinx
(3)設(shè)sinx=t,(-1≤t≤1)
則有
①當(dāng)時(shí),h(t)=4t+1在[-1,1]上是增函數(shù),∴λ= -1
②當(dāng)時(shí),對稱軸方程為直線.
ⅰ) 時(shí),,解得
ⅱ)當(dāng)時(shí),,解得
綜上,.
考點(diǎn):本題主要考查向量的坐標(biāo)運(yùn)算,三角函數(shù)的性質(zhì),三角函數(shù)恒等變換,二次函數(shù)圖象和性質(zhì)。
點(diǎn)評:典型題,本題較好地把向量、三角函數(shù)、二次函數(shù)結(jié)合在一起進(jìn)行考查,體現(xiàn)了高考考查的重點(diǎn),本題運(yùn)用了換元思想,也很好地運(yùn)用了轉(zhuǎn)化與化歸思想。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù),
(1)當(dāng)時(shí),求的最大值和最小值
(2)若在上是單調(diào)函數(shù),且,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù).
(1)求函數(shù)的最小正周期;
(2)當(dāng)時(shí),求函數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù)
(1)寫出函數(shù)的最小正周期和對稱軸;
(2)設(shè),的最小值是,最大值是,求實(shí)數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com