【題目】設.
(1) 求函數(shù)的單調區(qū)間;
(2) 若證明:
(3)若函數(shù)有兩個零點,且,求實數(shù)的取值范圍;
【答案】(1)當時,函數(shù)的單調遞增區(qū)間是;當時,函數(shù)的遞減區(qū)間是,單調遞增區(qū)間是;
(2)見解析
(3)
【解析】
(1)求出函數(shù)的導數(shù),分類解關于導函數(shù)的不等式,求出函數(shù)的單調區(qū)間即可;
(2)分析出函數(shù)在單調遞減,在單調遞增,得到即可;
(3)由題意知有兩個根,構造分析,得到,解出a的范圍即可.
(1)首先,函數(shù)定義域為,因,則當時,,
函數(shù)在上單調遞增;
當,且時,,函數(shù)的上單調遞減;時,,函數(shù)在上單調遞增,故當時,函數(shù)的單調遞增區(qū)間是;當時,函數(shù)的遞減區(qū)間是,單調遞增區(qū)間是;
(2)若,則,
當時,時,,
所以:函數(shù)在單調遞減,在單調遞增,故:;
(3)由題設有兩個零點,顯然,故,記,
當時,單調增;當時,單調減.所以當,即時,函數(shù)有兩個零點,所求實數(shù)的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A. “f(0)”是“函數(shù)f(x)是奇函數(shù)”的充要條件
B. 若p:,,則:,
C. “若,則”的否命題是“若,則”
D. 若為假命題,則p,q均為假命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設拋物線C:的焦點為F,拋物線上的點A到軸的距離等于.
(1)求拋物線C的方程;
(2)已知經過拋物線C的焦點F的直線與拋物線交于A,B兩點,證明: 為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】十一黃金小長假期間,某賓館有50個房間供游客住宿,當每個房間的房價為每天180元時,房間會全部住滿。當每個房間每天的房價每增加10元時,就會有一個房間空閑。賓館需對游客居住的每個房間每天支出20元的各種費用(人工費,消耗費用等等)。受市場調控,每個房間每天的房價不得高于340元。設每個房間的房價每天增加x元(x為10的正整數(shù)倍)。
(1) 設一天訂住的房間數(shù)為y,直接寫出y與x的函數(shù)關系式及自變量x的取值范圍;
(2) 設賓館一天的利潤為w元,求w與x的函數(shù)關系式;
(3) 一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的左右焦點分別為,,左頂點為,點在橢圓上,且的面積為.
(1)求橢圓的方程;
(2)過原點且與軸不重合的直線交橢圓于,兩點,直線分別與軸交于點,,.求證:以為直徑的圓恒過交點,,并求出面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線是拋物線的準線,直線,且與拋物線沒有公共點,動點在拋物線上,點到直線和的距離之和的最小值等于2.
(Ⅰ)求拋物線的方程;
(Ⅱ)點在直線上運動,過點做拋物線的兩條切線,切點分別為,在平面內是否存在定點,使得恒成立?若存在,請求出定點的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若,且直線是曲線的一條切線,求實數(shù)的值;
(2)若不等式對任意恒成立,求的取值范圍;
(3)若函數(shù)有兩個極值點,,且,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com