平面直角坐標系中,O為坐標系原點,給定兩點A(1,0),B(0,2),點C滿足
OC
=α•
OA
+β•
OB
,其中α,β∈R,α-2β=1.
(1)求點C(x,y)的軌跡方程;
(2)設(shè)點C的軌跡與雙曲線
x2
a2
-
y2
b2
=1
(a,b>0)交于兩點M、N,且以MN為直徑的圓過原點,求證:
1
a2
-
1
b2
為定值.
分析:(1)利用
OC
=α•
OA
+β•
OB
,確定A,B,C坐標之間的關(guān)系,利用α-2β=1可得點C的軌跡方程;
(2)點C(x,y)的軌跡方程與雙曲線聯(lián)立,利用韋達定理及以MN為直徑的圓過原點,即
OM
ON
=0
,化簡可得結(jié)論.
解答:解:(1)∵C(x,y),
OC
=α•
OA
+β•
OB
,∴(x,y)=α(1,0)+β(0,-2),
x=α
y=-2β

∵α-2β=1,∴x+y=1,即點C的軌跡方程為x+y=1.---------(6分)
(2)聯(lián)立方程組
x+y=1
x2
a2
-
y2
b2
=1
,消去y,整理得(b2-a2)x2+2a2x-a2-a2b2=0
依題意知b2-a2≠0,設(shè)M(x1,y1),N(x2,y2),
∴x1+x2=-
2a2
b2-a2
,x1x2=-
a2+a2b2
b2-a2

∵以MN為直徑的圓過原點,∴
OM
ON
=0
,即x1x2+y1y2=0
∴2x1x2+1-(x1+x2)=0,
∴2×(-
a2+a2b2
b2-a2
)+1-(-
2a2
b2-a2
)=0
化簡可得
1
a2
-
1
b2
=2為定值---------(16分)
點評:本題考查向量知識的運用,考查軌跡方程的求解,考查直線與雙曲線的位置關(guān)系,考查向量知識的運用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

平面直角坐標系中,O為坐標原點,已知兩點A(3,1)、B(-1,3),若點C滿足
OC
OA
OB
,其中α、β∈R,且α+β=1,則點C的軌跡方程為( 。
A、3x+2y-11=0
B、(x-1)2+(y-2)2=5
C、2x-y=0
D、x+2y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知水平地面上有一籃球,在斜平行光線的照射下,其陰影為一橢圓(如圖),在平面直角坐標系中,O為原點,設(shè)橢圓的方程為
x2
a2
+
y2
b2
=1
(a>b>0),籃球與地面的接觸點為H,則|OH|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系中,O(0,0),P(6,8),將向量
OP
按逆時針旋轉(zhuǎn)
π
4
后,得向量
OQ
則點Q的坐標是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面直角坐標系中,O為坐標原點,給定兩點A(1,0)、B(0,-2),點C滿足   
OC
OA
OB
,其中α
、β∈R,且α-2β=1
(1)求點C的軌跡方程;
(2)設(shè)點C的軌跡與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
交于兩點M、N,且以MN為直徑的圓過原點,求證:
1
a2
+
1
b2
為定值
;
(3)在(2)的條件下,若橢圓的離心率不大于
2
2
,求橢圓長軸長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•海淀區(qū)二模)平面直角坐標系中,O為坐標原點,已知兩定點A(1,0)、B(0,-1),動點P(x,y)滿足:
OP
=m
OA
+(m-1)
OB
(m∈R)

(1)求點P的軌跡方程;
(2)設(shè)點P的軌跡與雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
交于相異兩點M、N.若以MN為直徑的圓經(jīng)過原點,且雙曲線C的離心率等于
3
,求雙曲線C的方程.

查看答案和解析>>

同步練習(xí)冊答案