對(duì)任意的函數(shù)f(x),g(x),在公共定義域內(nèi),規(guī)定f(x)*g(x)=minf(x),g(x),若f(x)=6-x,數(shù)學(xué)公式,則f(x)*g(x)的最大值為_(kāi)_______.

2
分析:在同一個(gè)坐標(biāo)系中作出兩函數(shù)的圖象,橫坐標(biāo)一樣時(shí)取函數(shù)值較小的那一個(gè),如圖,由圖象可以看出,最大值是2.
解答:∵f(x)*g(x)=min{f(x),g(x)},
∴f(x)*g(x)=min{6-x,}的定義域?yàn)椋?,+∞),
f(x)*g(x)=min{6-x,}=,畫(huà)出其圖象如圖,由圖象可知
f(x)*g(x)的最大值為 2,
故答案為:2.
點(diǎn)評(píng):本題考點(diǎn)是函數(shù)的最值及其幾何意義,本題考查新定義,需要根據(jù)題目中所給的新定義作出相應(yīng)的圖象由圖象直觀觀察出函數(shù)的最值,對(duì)于一些分段類(lèi)的函數(shù),其最值往往借助圖象來(lái)解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的函數(shù)f(x)=sin(x+φ)有以下命題:
①對(duì)任意的φ,f(x)都是非奇非偶函數(shù);
②不存在φ,使f(x)既是奇函數(shù),又是偶函數(shù);
③存在φ,使f(x)是奇函數(shù);
④對(duì)任意的φ,f(x)都不是偶函數(shù).
其中一個(gè)假命題的序號(hào)是
 
.因?yàn)楫?dāng)φ=
 
時(shí),該命題的結(jié)論不成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)任意的函數(shù)f(x),g(x),在公共定義域內(nèi),規(guī)定f(x)*g(x)=minf(x),g(x),若f(x)=6-x,g(x)=
x
,則f(x)*g(x)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是區(qū)間D⊆[0,+∞)上的增函數(shù),若f(x)可表示為f(x)=f1(x)+f2(x),且滿(mǎn)足下列條件:①f1(x)是D上的增函數(shù);②f2(x)是D上的減函數(shù);③函數(shù)f2(x)的值域A⊆[0,+∞),則稱(chēng)函數(shù)f(x)是區(qū)間D上的“偏增函數(shù)”.
(1)(i) 問(wèn)函數(shù)y=sinx+cosx是否是區(qū)間(0,
π
4
)
上的“偏增函數(shù)”?并說(shuō)明理由;
(ii)證明函數(shù)y=sinx是區(qū)間(0,
π
4
)
上的“偏增函數(shù)”.
(2)證明:對(duì)任意的一次函數(shù)f(x)=kx+b(k>0),必存在一個(gè)區(qū)間D⊆[0,+∞),使f(x)為D上的“偏增函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省杭州二中高一(上)期末數(shù)學(xué)試卷(解析版) 題型:填空題

對(duì)任意的函數(shù)f(x),g(x),在公共定義域內(nèi),規(guī)定f(x)*g(x)=minf(x),g(x),若f(x)=6-x,,則f(x)*g(x)的最大值為   

查看答案和解析>>

同步練習(xí)冊(cè)答案