(本題滿分14分)設(shè)數(shù)列的前項和為,且滿足(=1,2,3,…).
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足,且,求數(shù)列的通項公式;
(1) ; (2) 。
【解析】
試題分析:(Ⅰ)由題設(shè)知a1=1,an+Sn=2,an+1+Sn+1=2,兩式相減:an+1-an+an+1=0,故有2an+1=an,,n∈N+,由此能求出數(shù)列{an}的通項公式.
(Ⅱ)由bn+1=bn+an(n=1,2,3,…),知bn+1-bn=()n-1,再由累加法能推導(dǎo)出bn=3-2( )n-1(n=1,2,3,…).
解:(1)當(dāng)時,,則---------------2分
當(dāng)時 ,,
則--------------------------------4分
所以,數(shù)列是以首項,公比為的等比數(shù)列,從而----8分
(2)
當(dāng)時,--10分
-----------12分
又滿足,---------14分
考點:本試題主要第(Ⅰ)題考查迭代法求數(shù)列通項公式的方法,第(Ⅱ)題考查累加法求數(shù)列通項公式的方法。
點評:解決該試題的關(guān)鍵是能夠利用迭代法表示出通項公式的運用,尋找規(guī)律,以及根據(jù)列加法求解數(shù)列的通項公式的問題。
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)
設(shè)函數(shù),。
(1)若,過兩點和的中點作軸的垂線交曲線于點,求證:曲線在點處的切線過點;
(2)若,當(dāng)時恒成立,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)設(shè)函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)求在[—1,2]上的最小值; (3)當(dāng)時,用數(shù)學(xué)歸納法證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011——2012學(xué)年湖北省洪湖二中高三八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本題滿分14分)設(shè)橢圓的左、右焦點分別為F1與
F2,直線過橢圓的一個焦點F2且與橢圓交于P、Q兩點,若的周長為。
(1)求橢圓C的方程;
(2)設(shè)橢圓C經(jīng)過伸縮變換變成曲線,直線與曲線相切
且與橢圓C交于不同的兩點A、B,若,求面積的取值范圍。(O為坐標(biāo)原點)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省杭州市高三寒假作業(yè)數(shù)學(xué)卷三 題型:解答題
(本題滿分14分)設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方有實數(shù)根;②函數(shù)的導(dǎo)數(shù)滿足”
(I)證明:函數(shù)是集合M中的元素;
(II)證明:函數(shù)具有下面的性質(zhì):對于任意,都存在,使得等式成立。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省揭陽市高三調(diào)研檢測數(shù)學(xué)理卷 題型:解答題
本題滿分14分)
設(shè)函數(shù).
(1)若,求函數(shù)的極值;
(2)若,試確定的單調(diào)性;
(3)記,且在上的最大值為M,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com