已知菱形ABCD邊長(zhǎng)為a,且其一條對(duì)角線(xiàn)BD=a,沿對(duì)角線(xiàn)BD將折起所在平面成直二面角,點(diǎn)E、F分別是BC、CD的中點(diǎn)。

    (1)求AC與平面AEF所成的角的余弦值

   (2)求二面角A-EF-B的正切值。

 


解析:

(1):菱形ABCD的對(duì)角線(xiàn),

,中位線(xiàn)EF//BD,可知面AOC,,故面,這樣AC在面AEF內(nèi)的射影就是AG,就是AC與平面AEF的成角,解三角形AOC可得

   

    (2)分析:由前一小問(wèn)的分析可知,

就是二面角A-EF-B的平面角,在中,,,。

   

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知菱形ABCD的邊長(zhǎng)為6,∠BAD=60°,AC∩BD=O.將菱形ABCD沿對(duì)角線(xiàn)AC折起,使BD=3
2
,得到三棱錐B-ACD.
(Ⅰ)若點(diǎn)M是棱BC的中點(diǎn),求證:OM∥平面ABD;
(Ⅱ)求二面角A-BD-O的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知菱形ABCD的邊長(zhǎng)為6,∠BAD=60°,AC∩BD=O.將菱形ABCD沿對(duì)角線(xiàn)AC折起,使BD=3
2
,得到三棱錐B-ACD.
(Ⅰ)若點(diǎn)M是棱BC的中點(diǎn),求證:OM∥平面ABD;
(Ⅱ)求二面角A-BD-O的余弦值;
(Ⅲ)設(shè)點(diǎn)N是線(xiàn)段BD上一個(gè)動(dòng)點(diǎn),試確定N點(diǎn)的位置,使得CN=4
2
,并證明你的結(jié)論.精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知菱形ABCD的邊長(zhǎng)為2,AC∩BD=O.∠DAB=60°,將菱形ABCD沿對(duì)角線(xiàn)AC折起,得到三棱錐D-ABC.

(1)求證:平面BOD⊥平面ABC;
(2)若三棱錐D-ABC的體積為
12
,求BD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:湖北省荊州中學(xué)2008高考復(fù)習(xí)立體幾何基礎(chǔ)題題庫(kù)一(有詳細(xì)答案)人教版 人教版 題型:044

已知菱形ABCD邊長(zhǎng)為a,且其一條對(duì)角線(xiàn)BDa,沿對(duì)角線(xiàn)BD將△ABC折起與△BCD所在平面成直二面角,點(diǎn)E、F分別是BC、CD的中點(diǎn).

(1)AC與平面AEF所成的角的余弦值

(2)求二面角AEFB的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案