已知函數(shù)在與時都取得極值
(1)求的值與函數(shù)的單調(diào)區(qū)間
(2)若對,不等式恒成立,求的取值范圍
(1) 遞增區(qū)間是與,遞減區(qū)間是;(2).
解析試題分析:(1)求出f′(x),因為函數(shù)在x=-
與x=1時都取得極值,所以得到f′(-)=0且f′(1)=0聯(lián)立解得a與b的值,然后把a(bǔ)、b的值代入求得f(x)及f′(x),然后討論導(dǎo)函數(shù)的正負(fù)得到函數(shù)的增減區(qū)間;
(2)根據(jù)(1)函數(shù)的單調(diào)性,由于x∈[-1,2]恒成立求出函數(shù)的最大值值為f(2),代入求出最大值,然后令f(2)<c2列出不等式,求出c的范圍即可..
試題解析:解:(1) 1分;
由,得 3分;
,函數(shù)的單調(diào)區(qū)間如下表:
所以函數(shù)的遞增區(qū)間是與,遞減區(qū)間是; 6分; 極大值 ¯ 極小值
(2),當(dāng)時,
為極大值,而,則為最大值, 9分;
要使恒成立,則只需要, 10分;
得 12分;
考點(diǎn):1.利用導(dǎo)數(shù)研究函數(shù)的極值;2.函數(shù)恒成立問題;3.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性..
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)和是函數(shù)的兩個極值點(diǎn),其中.
(1)求的取值范圍;
(2)若為自然對數(shù)的底數(shù)),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)求在點(diǎn)(1,0)處的切線方程;
(2)判斷及在區(qū)間上的單調(diào)性;
(3)證明:在上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若,討論函數(shù)在區(qū)間上的單調(diào)性;
(2)若且對任意的,都有恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某廠生產(chǎn)產(chǎn)品x件的總成本(萬元),已知產(chǎn)品單價P(萬元)與產(chǎn)品件數(shù)x滿足:,生產(chǎn)100件這樣的產(chǎn)品單價為50萬元,產(chǎn)量定為多少件時總利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時,求函數(shù)在點(diǎn)(1,1)處的切線方程;
(2)若在y軸的左側(cè),函數(shù)的圖象恒在的導(dǎo)函數(shù)圖象的上方,求k的取值范圍;
(3)當(dāng)k≤-l時,求函數(shù)在[k,l]上的最小值m。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)="xlnx" (x 1)(ax a+1)(a∈R).
(1)若a=0,判斷f(x)的單調(diào)性;.
(2)若x>1時,f(x)<0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中.
(1)若,求函數(shù)的極值點(diǎn);
(2)若在區(qū)間內(nèi)單調(diào)遞增,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com