【題目】已知二次函數(shù)的圖象的頂點(diǎn)坐標(biāo)為,且過坐標(biāo)原點(diǎn).數(shù)列的前項(xiàng)和為,點(diǎn)在二次函數(shù)的圖象上.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),數(shù)列的前項(xiàng)和為,若對(duì)恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)在數(shù)列中是否存在這樣一些項(xiàng):,這些項(xiàng)都能夠構(gòu)成以為首項(xiàng),為公比的等比數(shù)列?若存在,寫出關(guān)于的表達(dá)式;若不存在,說明理由.
【答案】(Ⅰ);(Ⅱ)(Ⅲ)存在,
【解析】
試題(Ⅰ)由已知可得數(shù)列的前項(xiàng)和為的公式,再利用求得數(shù)列的通項(xiàng)公式;
(Ⅱ)分n為奇數(shù)與偶數(shù)先求出,由使對(duì)恒成立,通過分離參數(shù)t轉(zhuǎn)化為求函數(shù)的最值,即可求得實(shí)數(shù)的取值范圍;
(Ⅲ)由知,數(shù)列中每一項(xiàng)都不可能是偶數(shù),假設(shè)存在,對(duì)q的每一個(gè)取值:1,2,3,4逐一討論即可獲得結(jié)論.
試題解析:(Ⅰ)由題意可知
所以
當(dāng)時(shí),
當(dāng)時(shí)適合上式
所以,數(shù)列的通項(xiàng)公式為
(Ⅱ)因?yàn)?/span>
所以
由(Ⅰ)可知,數(shù)列是以1為首項(xiàng),公差為的等差數(shù)列.
當(dāng)時(shí),
當(dāng)時(shí),
所以;
要使對(duì)恒成立,
只要使為正偶數(shù))恒成立.
即使對(duì)為正偶數(shù)恒成立,
故實(shí)數(shù)的取值范圍是
(Ⅲ)由知,數(shù)列中每一項(xiàng)都不可能是偶數(shù).
如存在以為首項(xiàng),公比為2或4的數(shù)列,此時(shí)中每一項(xiàng)除第一項(xiàng)外都是偶數(shù),故不存在以為首項(xiàng),公比為偶數(shù)的數(shù)列.
當(dāng)時(shí),顯然不存在這樣的數(shù)列.
當(dāng)時(shí),若存在以為首項(xiàng),公比為3的數(shù)列,則
所以存在滿足條件的數(shù)列,且
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列有關(guān)命題的說法中錯(cuò)誤的是( )
A. 若為真命題,則中至少有一個(gè)為真命題.
B. 命題:“若是冪函數(shù),則的圖象不經(jīng)過第四象限”的否命題是假命題.
C. 命題“,有且”的否定形式是“,有 且”.
D. 若直線和平面,滿足.則“” 是“”的充分不必要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】總體由編號(hào)為01,02,…,49,50的50個(gè)個(gè)體組成,利用下面的隨機(jī)數(shù)表選取6個(gè)個(gè)體,選取方法是從隨機(jī)數(shù)表第7行的第9列和第10列數(shù)字開始從左到右依次選取兩個(gè)數(shù)字,則選出的第4個(gè)個(gè)體的編號(hào)為( )
附:第6行至第8行的隨機(jī)數(shù)表
2748 6198 7164 4148 7086 2888 8519 1620 7477
0111 1630 2404 2979 7991 9624 5125 3211 4919
7306 4916 7677 8733 9974 6732 2635 7900 3370
A.11B.24C.25D.20
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)y=f(x)在(-∞,1]上有定義,對(duì)于給定的實(shí)數(shù)K,定義fK(x)=,給出函數(shù)f(x)=2x+1-4x,若對(duì)于任意x∈(-∞,1],恒有fK(x)=f(x),則( )
A.K的最大值為0
B.K的最小值為0
C.K的最大值為1
D.K的最小值為1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),x∈[-1,1],函數(shù),a∈R的最小值為h(a).
(1)求h(a)的解析式;
(2)是否存在實(shí)數(shù)m,n同時(shí)滿足下列兩個(gè)條件:①m>n>3;②當(dāng)h(a)的定義域?yàn)?/span>[n,m]時(shí),值域?yàn)?/span>[n2,m2]?若存在,求出m,n的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,,,,點(diǎn)Q在棱AB上.
(1)證明:平面.
(2)若三棱錐的體積為,求點(diǎn)B到平面PDQ的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)的和為且數(shù)列滿足且對(duì)任意正整數(shù)都有成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式.
(2)證明數(shù)列為等差數(shù)列.
(3)令問是否存在正整數(shù)使得成等比數(shù)列?若存在,求出的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣a|+3x,其中a>0.
(1)當(dāng)a=1時(shí),求不等式f(x)>3x+2的解集;
(2)若不等式f(x)≤0的解集為{x|x≤﹣1},求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了測(cè)量某塔的高度,某人在一條水平公路兩點(diǎn)進(jìn)行測(cè)量.在點(diǎn)測(cè)得塔底在南偏西,塔頂仰角為,此人沿著南偏東方向前進(jìn)10米到點(diǎn),測(cè)得塔頂?shù)难鼋菫?/span>,則塔的高度為( )
A. 5米B. 10米C. 15米D. 20米
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com