(本題滿(mǎn)分15分 )已知橢圓經(jīng)過(guò)點(diǎn),一個(gè)焦點(diǎn)是
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓軸的兩個(gè)交點(diǎn)為、,點(diǎn)在直線(xiàn)上,直線(xiàn)、分別與橢圓交于兩點(diǎn).試問(wèn):當(dāng)點(diǎn)在直線(xiàn)上運(yùn)動(dòng)時(shí),直線(xiàn)是否恒經(jīng)過(guò)定點(diǎn)?證明你的結(jié)論.

I)
(II)當(dāng)點(diǎn)在直線(xiàn)上運(yùn)動(dòng)時(shí),直線(xiàn)恒經(jīng)過(guò)定點(diǎn)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分14分)
設(shè)直線(xiàn)與拋物線(xiàn)交于不同兩點(diǎn)A、B,F(xiàn)為拋物線(xiàn)的焦點(diǎn)。
(1)求的重心G的軌跡方程;
(2)如果的外接圓的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的右焦點(diǎn)為,離心率為.
(1)若,求橢圓的方程; (2)設(shè)直線(xiàn)與橢圓相交于兩點(diǎn),分別為線(xiàn)段的中點(diǎn).若坐標(biāo)原點(diǎn)在以為直徑的圓上,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分14分) 如圖,已知拋物線(xiàn)與坐標(biāo)軸分別交于A(yíng)、B、C三點(diǎn),過(guò)坐標(biāo)原點(diǎn)O的直線(xiàn)與拋物線(xiàn)交于M、N兩點(diǎn).分別過(guò)點(diǎn)C、D作平行于軸的直線(xiàn).(1)求拋物線(xiàn)對(duì)應(yīng)的二次函數(shù)的解析式;
(2)求證以O(shè)N為直徑的圓與直線(xiàn)相切;
(3)求線(xiàn)段MN的長(zhǎng)(用表示),并證明M、N兩
點(diǎn)到直線(xiàn)的距離之和等于線(xiàn)段MN的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓,拋物線(xiàn)的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為坐標(biāo)原點(diǎn),從每條曲線(xiàn)上各取兩個(gè)點(diǎn),將其坐標(biāo)記錄于表中:











 
(1)求的標(biāo)準(zhǔn)方程;
(2)請(qǐng)問(wèn)是否存在直線(xiàn)同時(shí)滿(mǎn)足條件:(ⅰ)過(guò)的焦點(diǎn);(ⅱ)與交于不同兩點(diǎn),且滿(mǎn)足.若存在,求出直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,橢圓
(1)若一直線(xiàn)與橢圓交于兩不同點(diǎn),且線(xiàn)段恰以點(diǎn)為中點(diǎn),求直線(xiàn)的方程;
(2)若過(guò)點(diǎn)的直線(xiàn)(非軸)與橢圓相交于兩個(gè)不同點(diǎn)試問(wèn)在軸上是否存在定點(diǎn),使恒為定值?若存在,求出點(diǎn)的坐標(biāo)及實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某公園內(nèi)有一橢圓形景觀(guān)水池,經(jīng)測(cè)量知,橢圓長(zhǎng)軸長(zhǎng)為20米,短軸長(zhǎng)為16米,現(xiàn)以橢圓長(zhǎng)軸所在直線(xiàn)為軸,短軸所在直線(xiàn)為軸,建立平面直角坐標(biāo)系,如圖所示:

(1)為增加景觀(guān)效果,擬在水池內(nèi)選定兩點(diǎn)安裝水霧噴射口,要求橢圓上各點(diǎn)到這兩點(diǎn)距離之和都相等,請(qǐng)指出水霧噴射口的位置(用坐標(biāo)表示),并求橢圓的方程。
(2)為了增加水池的觀(guān)賞性,擬劃出一個(gè)以橢圓的長(zhǎng)軸頂點(diǎn)A、短軸頂點(diǎn)B及橢圓上某點(diǎn)M構(gòu)成的三角形區(qū)域進(jìn)行夜景燈光布置,請(qǐng)確定點(diǎn)M的位置,使此三角形區(qū)域面積最大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)求與雙曲線(xiàn)有共同漸近線(xiàn),并且經(jīng)過(guò)點(diǎn) (-3,)的雙曲線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的中心是坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且橢圓過(guò)點(diǎn)三點(diǎn).
(1)求橢圓的方程;
(2)若點(diǎn)為橢圓上不同于的任意一點(diǎn),,求內(nèi)切圓的面積的最大值,并指出其內(nèi)切圓圓心的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案