函數(shù)f(x)=ax2-(a+1)x+2在區(qū)間(-∞,1)上是減函數(shù),那么實(shí)數(shù)a的取值范圍是( 。
分析:先討論a的取值,當(dāng)a=0時,為一次函數(shù),滿足條件.當(dāng)a≠0時,為二次函數(shù),利用函數(shù)的單調(diào)性和對稱軸之間的關(guān)系,確定區(qū)間和對稱軸的位置,從而建立不等式關(guān)系,進(jìn)行求解即可.
解答:解:當(dāng)a=0時,f(x)=ax2-(a+1)x+2=-x+2,在定義域R上單調(diào)遞減,滿足在區(qū)間(-∞,1)上是減函數(shù),所以a=0成立.
當(dāng)a≠0時,二次函數(shù)f(x)=ax2-(a+1)x+2的對稱軸為x=-
-(a+1)
2a
=
a+1
2a
,
∴要使f(x)=ax2-(a+1)x+2在區(qū)間(-∞,1)上是減函數(shù),
則必有a>0且對稱軸
a+1
2a
≥1
,即a+1≥2a,
解得0<a≤1,
綜上0≤a≤1.
即a的取值范圍是[0,1].
故選C.
點(diǎn)評:本題主要考查二次函數(shù)的圖象和性質(zhì),利用二次函數(shù)單調(diào)性由對稱軸決定,從而得到對稱軸與已知區(qū)間的關(guān)系是解決本題的關(guān)鍵,本題要注意對a進(jìn)行分類討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx(a,b是常數(shù),且a≠0),f(2)=0,且方程f(x)=x有兩個相等的實(shí)數(shù)根.
(1)求f(x)的解析式;
(2)當(dāng)x∈[0,3]時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax2+bx+c(a≠0),曲線y=f(x)通過點(diǎn)(0,2a+3),且在x=1處的切線垂直于y軸.
(Ⅰ)用a分別表示b和c;
(Ⅱ)當(dāng)bc取得最大值時,寫出y=f(x)的解析式;
(Ⅲ)在(Ⅱ)的條件下,g(x)滿足
43
f(x)-6
=(x-2)g(x)(x>2),求g(x)的最大值及相應(yīng)x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+ln(x+1).
(Ⅰ)當(dāng)a=
1
4
時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x∈[0,+∞)時,不等式f(x)≤x恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)求證:(1+
2
2×3
)×(1+
4
3×5
)×(1+
8
5×9
)…(1+
2n
(2n-1+1)(2n+1)
)<e
(其中,n∈N*,e是自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)a,b,c(a≠0)滿足
a
m+2
+
b
m+1
+
c
m
=0(m>0)
,對于函數(shù)f(x)=ax2+bx+c,af(
m
m+1
)
與0的大小關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx+1(a,b為實(shí)數(shù)),x∈R,F(x)=
f(x)(x>0)
-f(x)(x<0)

(1)若f(-1)=0,且函數(shù)f(x)的值域?yàn)閇0,+∞),求F(x)的表達(dá)式;
(2)在(1)的條件下,當(dāng)x∈[-2,2]時,g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;
(3)設(shè)m•n<0,m+n>0,a>0且f(x)為偶函數(shù),判斷F(m)+F(n)能否大于零.

查看答案和解析>>

同步練習(xí)冊答案