設(shè)面積為S的平面四邊形的第i條邊的邊長(zhǎng)為ai(i=1,2,3,4),P是該四邊形內(nèi)一點(diǎn),點(diǎn)P到第i條邊的距離記為hi,若
a1
1
=
a2
2
=
a3
3
=
a4
4
=k,則
4
i=1
(ihi=
2S
k
)
,類比上述結(jié)論,體積為V的三棱錐的第i個(gè)面的面積記為Si(i=1,2,3,4),Q是該三棱錐內(nèi)的一點(diǎn),點(diǎn)Q到第i個(gè)面的距離記為di,若
S1
1
=
S2
2
=
S3
3
=
S4
4
=k,則
4
i=1
(idi)
等于
 
分析:
a1
1
=
a2
2
=
a3
3
=
a4
4
=k
可得ai=ik,P是該四邊形內(nèi)任意一點(diǎn),將P與四邊形的四個(gè)定點(diǎn)連接,得四個(gè)小三角形,四個(gè)小三角形面積之和為四邊形面積,即采用分割法求面積;同理對(duì)三棱值得體積可分割為5個(gè)已知底面積和高的小棱錐求體積.
解答:解:根據(jù)三棱錐的體積公式 V=
1
3
Sh

得:
1
3
S1H1+
1
3
S2H2+
1
3
S3H3+
1
3
S4H4=V
,
即S1H1+2S2H2+3S3H3+4S4H4=3V,
H1+2H2+3H3+4H4=
3V
K
,
4
i=1
(iHi)=
3V
K

故答案為:
3V
k
點(diǎn)評(píng):本題主要考查三棱錐的體積計(jì)算和運(yùn)用類比思想進(jìn)行推理的能力.解題的關(guān)鍵是理解類比推理的意義,掌握類比推理的方法.平面幾何的許多結(jié)論,可以通過類比的方法,得到立體幾何中相應(yīng)的結(jié)論.當(dāng)然,類比得到的結(jié)論是否正確,則是需要通過證明才能加以肯定的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)面積為S的平面四邊形的第i條邊的邊長(zhǎng)記為ai(i=1,2,3,4),P是該四邊形內(nèi)任意一點(diǎn),P點(diǎn)到第i條邊的距離記為hi,若
a1
1
=
a2
2
=
a3
3
=
a4
4
=k
,則
4
i=1
(ihi)=
2S
k
.類比上述結(jié)論,體積為V的三棱錐的第i個(gè)面的面積記為Si(i=1,2,3,4),Q是該三棱錐內(nèi)的任意一點(diǎn),Q點(diǎn)到第i個(gè)面的距離記為Hi,相應(yīng)的正確命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)面積為S的平面四邊形的第i條邊的邊長(zhǎng)為ai(i=1,2,3,4),P是該四邊形內(nèi)一點(diǎn),點(diǎn)P到第i條邊的距離記為hi,若
a1
1
=
a2
2
=
a3
3
=
a4
4
=k,則h1+2h2+3h3+4h4=
2S
k
,類比上述結(jié)論,體積為V的三棱錐的第i個(gè)面的面積記為Si(i=1,2,3,4),Q是該三棱錐內(nèi)的一點(diǎn),點(diǎn)Q到第i個(gè)面的距離記為di,若
S1
1
=
S2
2
=
S3
3
=
S4
4
=k,則d1+2d2+3d3+4d4
等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山西省高三第一次模擬試題理科數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè)面積為S的平面四邊形的第條邊的邊長(zhǎng)為,P是該四邊形內(nèi)一點(diǎn),點(diǎn)P到第條邊的距離記為,若,則,類比上述結(jié)論,體積為V的三棱錐的第個(gè)面的面積記為,Q是該三棱錐內(nèi)的一點(diǎn),點(diǎn)Q到第個(gè)面的距離記為,若等于      

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省高三第一次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

設(shè)面積為S的平面四邊形的第條邊的邊長(zhǎng)為,P是該四邊形內(nèi)一點(diǎn),點(diǎn)P到第條邊的距離記為,若,則,類比上述結(jié)論,體積為V的三棱錐的第個(gè)面的面積記為,Q是該三棱錐內(nèi)的一點(diǎn),點(diǎn)Q到第個(gè)面的距離記為,若等于       .

 

查看答案和解析>>

同步練習(xí)冊(cè)答案