已知條件p:
1
2
≤x≤1
,條件q:x2-(2a+1)x+a(a+1)≤0,若p是q充分不必要條件,則a的取值范圍是
0≤a≤
1
2
0≤a≤
1
2
分析:根據(jù)一元二次不等式的解法求出命題q,由p是q的充分不必要條件,可知p⇒q,從而求出a的范圍.
解答:解:∵q:實(shí)數(shù)x滿足x2-(2a+1)x+a(a+1)≤0.
∴q:a≤x≤1+a.
p:
1
2
≤x≤1

由p是q的充分不必要條件,∴p⇒q,且q推不出p,
a≤
1
2
a+1≥1

所以0≤a≤
1
2
,實(shí)數(shù)a的取值范圍是:0≤a≤
1
2
;
故答案為:0≤a≤
1
2
點(diǎn)評(píng):本題考查充分條件、必要條件和充要條件,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意不等式組的解法,此題是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法:
①用“輾轉(zhuǎn)相除法”求得243,135 的最大公約數(shù)是9;
②命題p:?x∈R,x2-x+
1
4
<0
,則?p是?x0∈R,x02-x0+
1
4
≥0
;
③已知條件p:x>1,y>1,條件q:x+y>2,xy>1,則條件p是條件q成立的充分不必要條件;
④若
a
=(1,0,1),
b
=(-1,1,0)
,則
a
,
b
>=
π
2
;
⑤已知f(n)=
1
n
+
1
n+1
+
1
n+2
+…+
1
n2
,則f(n)中共有n2-n+1項(xiàng),當(dāng)n=2時(shí),f(2)=
1
2
+
1
3
+
1
4
;
⑥直線l:y=kx+1與雙曲線C:x2-y2=1的左支有且僅有一個(gè)公共點(diǎn),則k的取值范圍是-1<k<1或k=
2

其中正確的命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:
12
≤x≤1
,命題q:x2-(2a+1)x+a(a+1)≤0,若?p是?q的必要而不充分條件,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•崇明縣二模)已知條件P:函數(shù)y=logcx在(0,+∞)上為單調(diào)遞減函數(shù);條件Q:不等式x+|x-2c|>1的解集為R.如果P是Q的充分不必要條件,則實(shí)數(shù)c需滿足的條件是
1
2
≤c<1
1
2
≤c<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知命題p:
1
2
≤x≤1
,命題q:x2-(2a+1)x+a(a+1)≤0,若?p是?q的必要而不充分條件,則實(shí)數(shù)a的取值范圍是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案