[2012·廣東卷] 某幾何體的三視圖如圖1-1所示,它的體積為( )
圖1-1
A.72π B.48π
C.30π D.24π
C [解析] 根據(jù)三觀圖知該幾何體是由半球與圓錐構(gòu)成,球的半徑R=3,圓錐半徑R=3,高為4,所以V組合體=V半球+V圓錐=×π×33+π×32×4=30π,所以選擇C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
[2012·廣東卷] 如圖1-5所示,在四棱錐P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中點(diǎn),F是DC上的點(diǎn)且DF=AB,PH為△PAD中AD邊上的高.
(1)證明:PH⊥平面ABCD;
(2)若PH=1,AD=,FC=1,求三棱錐E-BCF的體積;
(3)證明:EF⊥平面PAB.
圖1-5
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
[2012·廣東卷] 如圖1-5所示,在四棱錐P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中點(diǎn),F是DC上的點(diǎn)且DF=AB,PH為△PAD中AD邊上的高.
(1)證明:PH⊥平面ABCD;
(2)若PH=1,AD=,FC=1,求三棱錐E-BCF的體積;
(3)證明:EF⊥平面PAB.
圖1-5
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(2012年高考廣東卷理科20)(本小題滿(mǎn)分14分)
在平面直角坐標(biāo)系xOy中,已知橢圓C1:的離心率e=,且橢圓C上的點(diǎn)到Q(0,2)的距離的最大值為3.
(1)求橢圓C的方程;
(2)在橢圓C上,是否存在點(diǎn)M(m,n)使得直線(xiàn)l:mx+ny=1與圓O:x2+y2=1相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及相對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com