. 已知函數(shù),其中,

(1)當(dāng)時(shí),把函數(shù)寫(xiě)成分段函數(shù)的形式;

(2)當(dāng)時(shí),求在區(qū)間[1,3]上的最值;

(3)設(shè),函數(shù)在(m,n)上既有最大值又有最小值,請(qǐng)分別求出m,n的取值范圍

(用表示).

 

【答案】

 

解:(1)時(shí),……………………..4分

(2)結(jié)合圖像,,,

所以函數(shù)在區(qū)間上最大值為18,最小值為4………..8分

   (也可寫(xiě)出單調(diào)區(qū)間,寫(xiě)出可能的最值點(diǎn)及最值)

 

 

 

 

(3)當(dāng)時(shí),函數(shù)的圖像如右,要使得在開(kāi)區(qū)間有最大值又有最小值,則最小值一定在處取得,最大值在處取得;,在區(qū)間內(nèi),函數(shù)值為時(shí),所以;,而在區(qū)間內(nèi)函數(shù)值為時(shí),所以……………..12分

 

當(dāng)時(shí),函數(shù)的圖像如右,要使得在開(kāi)區(qū)間有最大值又有最小值,則最大值一定在處取得,最小值在處取得,,在內(nèi)函數(shù)值為時(shí),所以,,在區(qū)間內(nèi),函數(shù)值為時(shí),

 

 

,所以……………..15分

 

綜上所述,時(shí),,;

時(shí),,.

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年臨沂市質(zhì)檢一文)(14分)已知函數(shù)(其中a>0),且在點(diǎn)(0,0)處的切線與直線平行。

   (1)求c的值;

   (2)設(shè)的兩個(gè)極值點(diǎn),且的取值范圍;

   (3)在(2)的條件下,求b的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

⒗ 已知函數(shù),其中為實(shí)數(shù),且處取得的極值為

⑴求的表達(dá)式;

⑵若處的切線方程。

  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年北京市西城區(qū)高三上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),其中是自然對(duì)數(shù)的底數(shù),.

函數(shù)的單調(diào)區(qū)間;

當(dāng)時(shí),求函數(shù)的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年上海黃浦區(qū)高三上學(xué)期期末考試(即一模)文數(shù)學(xué)卷(解析版) 題型:解答題

已知函數(shù)(其中是實(shí)數(shù)常數(shù),

(1)若,函數(shù)的圖像關(guān)于點(diǎn)(—1,3)成中心對(duì)稱,求的值;

(2)若函數(shù)滿足條件(1),且對(duì)任意,總有,求的取值范圍;

(3)若b=0,函數(shù)是奇函數(shù),,,且對(duì)任意時(shí),不等式恒成立,求負(fù)實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆陜西省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

已知函數(shù)(其中)的圖象如圖(上)所示,則函數(shù)的圖象是( 。                                                    

 

查看答案和解析>>

同步練習(xí)冊(cè)答案