如圖,梯形ABCD中,ADBC,∠ABC=
π
2
,AB=a,AD=3a,∠ADC=arcsin
5
5
,PA⊥面ABCD,PA=a.求:
(1)二面角P-CD-A的大。ㄓ梅慈呛瘮(shù)表示);
(2)點(diǎn)A到平面PBC的距離.
(1)作AE⊥直線CD于E連PE.
由PA⊥面ABCD據(jù)三垂線定理知PE⊥CD.∴∠PEA是二面角P-CD-A的平面角.
在Rt△AED中,AD=3a,∠ADE=arcsin
5
5
.∴AE=AD•sin∠ADE=
3
5
5
a
在Rt△PAE,中tan∠PEA=
PA
AE
=
5
3
.∴∠PEA=arctg
5
3

即二面角P-CD-A的大小為arctg
5
3

(2)作AH⊥PB于H.
由PA⊥面ABCD,∵BC⊥AB,∴PB⊥BC.
又PB∩AB=B,∴BC⊥面PAB.
∴BC⊥AH.
∴AH⊥面PBC,AH的長(zhǎng)為點(diǎn)A到面PBC的距離.
在等腰Rt△PAB中,AH=
2
2
a.
∴點(diǎn)A到平面PBC的距離是
2
2
a.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,斜三棱柱的底面是直角三角形,,點(diǎn)在底面內(nèi)的射影恰好是的中點(diǎn),且

(1)求證:平面平面;
(2)若,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

二面角α-EF-β的大小為120°,A是它內(nèi)部的一點(diǎn)AB⊥α,AC⊥β,B,C分別為垂足.
(1)求證:平面ABC⊥β;
(2)當(dāng)AB=4cm,AC=6cm,求BC的長(zhǎng)及A到EF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知二面角α-l-β的大小為60°,點(diǎn)A∈α,AC⊥l,C為垂足,點(diǎn)B∈β,BD⊥l,D為垂足,若AB=2,AC=BD=1,則CD=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直二面角α-l-β的棱l上有一點(diǎn)A,在平面α,β內(nèi)各有一條射線AB,AC與l成45°,AB?α,AC?β,則∠BAC=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點(diǎn).
(Ⅰ)求證:平面PAC⊥平面PBC;
(Ⅱ)若AB=2,AC=1,PA=1,求證:二面角C-PB-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,三棱柱ABC-A′B′C′的所有棱長(zhǎng)都相等,側(cè)棱與底面垂直,M是側(cè)棱BB′的中點(diǎn),則二面角M-AC-B的大小為( 。
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直三棱柱ABC-A1B1C1中,AB⊥BC,E為棱CC1的中點(diǎn),已知AB=
2
,BB1=2,BC=1.
(1)證明:BE是異面直線AB與EB1的公垂線;
(2)求二面角A-EB1-A1的大;
(3)求點(diǎn)A1到面AEB1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩條直線m,n,兩個(gè)平面α,β.給出下面四個(gè)命題:
①m∥n,m⊥α⇒n⊥α;
②α∥β,m?α,n?β⇒m∥n;
③m∥n,m∥α⇒n∥α;
④α∥β,m∥n,m⊥α⇒n⊥β.
其中正確命題的序號(hào)是(  )
A.①③B.②④C.①④D.②③

查看答案和解析>>

同步練習(xí)冊(cè)答案