已知關(guān)于的一次函數(shù)
(1)設(shè)集合,分別從集合中隨機(jī)取一個(gè)數(shù)作為,,求函數(shù)是增函數(shù)的概率;
(2)若實(shí)數(shù)滿足條件,求函數(shù)的圖象不經(jīng)過第四象限的概率.

(1);(2)

解析試題分析:(1)依題意,基本事件總數(shù)為8個(gè),記“函數(shù)是增函數(shù)”為事件A,則,事件A包含的基本事件分別為:,,共4個(gè),由古典概型的概率計(jì)算公式得,所求概率為;(2)本題還有兩個(gè)變量,基本事件用有序?qū)崝?shù)對(duì)表示,畫出不等式表示的平面區(qū)域,即基本事件空間,因?yàn)楹瘮?shù)的圖象不經(jīng)過第四象限,則滿足,由幾何概型的概率計(jì)算公式,可計(jì)算其面積的比即為概率.
試題解析:(1)抽取全部結(jié)果所構(gòu)成的基本事件空間為
共8個(gè)4分
設(shè)函數(shù)是增函數(shù)為事件,有4個(gè)7分
(2)實(shí)數(shù),滿足條件,要函數(shù)的圖象不經(jīng)過第四象限
則需使滿足,即, 10分
設(shè)“函數(shù)的圖象不經(jīng)過第四象限”為事件B,則
考點(diǎn):1、一次函數(shù)的圖象;2、古典概型;3、幾何概型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某學(xué)校為了解高三年級(jí)學(xué)生寒假期間的學(xué)習(xí)情況,抽取甲、乙兩班,調(diào)查這兩個(gè)班的學(xué)生在寒假期間每天平均學(xué)習(xí)的時(shí)間(單位:小時(shí)),統(tǒng)計(jì)結(jié)果繪成頻率分布直方圖(如圖).已知甲、乙兩班學(xué)生人數(shù)相同,甲班學(xué)生每天平均學(xué)習(xí)時(shí)間在區(qū)間的有8人.

(1)求直方圖中的值及甲班學(xué)生每天平均學(xué)習(xí)時(shí)間在區(qū)間的人數(shù);
(2)從甲、乙兩個(gè)班每天平均學(xué)習(xí)時(shí)間大于10個(gè)小時(shí)的學(xué)生中任取4人參加測(cè)試,設(shè)4人中甲班學(xué)生的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

袋中裝有黑球和白球共7個(gè),從中任取2個(gè)球都是白球的概率為,現(xiàn)有甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到兩人中有一人取到白球時(shí)即終止,每個(gè)球在每一次被取出的機(jī)會(huì)是等可能的,用ξ表示取球終止所需要的取球次數(shù).
(1)求袋中原有白球的個(gè)數(shù);
(2)求隨機(jī)變量ξ的概率分布;
(3)求甲取到白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,A地到火車站共有兩條路徑L1和L2,據(jù)統(tǒng)計(jì),通過兩條路徑所用的時(shí)間互不影響,所用時(shí)間落在各時(shí)間段內(nèi)的頻率如下表:

時(shí)間(分鐘)
10~20
20~30
30~40
40~50
50~60
L1的頻率
0.1
0.2
0.3
0.2
0.2
L2的頻率
0
0.1
0.4
0.4
0.1
現(xiàn)甲、乙兩人分別有40分鐘和50分鐘時(shí)間用于趕往火車站.
(1)為了盡最大可能在各自允許的時(shí)間內(nèi)趕到火車站,甲和乙應(yīng)如何選擇各自的路徑?
(2)用X表示甲、乙兩人中在允許的時(shí)間內(nèi)能趕到火車站的人數(shù),針地(1)的選擇方案,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了解心肺疾病是否與年齡相關(guān),現(xiàn)隨機(jī)抽取了40名市民,得到數(shù)據(jù)如下表:

 
患心肺疾病
不患心肺疾病
合計(jì)
大于40歲
16
 
 
小于等于40歲
 
12

合計(jì)
 
 
40
已知在全部的40人中隨機(jī)抽取1人,抽到不患心肺疾病的概率為
(1)請(qǐng)將列聯(lián)表補(bǔ)充完整;
(2)已知大于40歲患心肺疾病市民中,經(jīng)檢查其中有4名重癥患者,專家建議重癥患者住院治療,現(xiàn)從這16名患者中選出兩名,記需住院治療的人數(shù)為,求的分布列和數(shù)學(xué)期望;
(3)能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為患心肺疾病與年齡有關(guān)?
下面的臨界值表供參考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某出租車公司為了解本公司出租車司機(jī)對(duì)新法規(guī)的知曉情況,隨機(jī)對(duì)100名出租車司機(jī)進(jìn)行調(diào)查.調(diào)查問卷共10道題,答題情況如下表:

答對(duì)題目數(shù)

8
9


2
13
12
8

3
37
16
9
(1)如果出租車司機(jī)答對(duì)題目數(shù)大于等于9,就認(rèn)為該司機(jī)對(duì)新法規(guī)的知曉情況比較好,試估計(jì)該公司的出租車司機(jī)對(duì)新法規(guī)知曉情況比較好的概率;
(2)從答對(duì)題目數(shù)少于8的出租車司機(jī)中任選出兩人做進(jìn)一步的調(diào)查,求選出的兩人中至少有一名女出租車司機(jī)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

“蛟龍?zhí)枴睆暮5字袔Щ氐哪撤N生物,甲乙兩個(gè)生物小組分別獨(dú)立開展對(duì)該生物離開恒溫箱的成活情況進(jìn)行研究,每次試驗(yàn)一個(gè)生物,甲組能使生物成活的概率為,乙組能使生物成活的概率為,假定試驗(yàn)后生物成活,則稱該試驗(yàn)成功,如果生物不成活,則稱該次試驗(yàn)是失敗的.
(1)甲小組做了三次試驗(yàn),求至少兩次試驗(yàn)成功的概率;
(2)如果乙小組成功了4次才停止試驗(yàn),求乙小組第四次成功前共有三次失敗,且恰有兩次連續(xù)失敗的概率;
(3)若甲乙兩小組各進(jìn)行2次試驗(yàn),設(shè)試驗(yàn)成功的總次數(shù)為,求的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

箱子里有3雙不同的手套,隨機(jī)拿出2只,記事件A表示“拿出的手套配不成對(duì)”;事件B表示“拿出的都是同一只手上的手套”.
(1)請(qǐng)列出所有的基本事件;
(2)分別求事件A、事件B的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

“拋階磚”是國(guó)外游樂場(chǎng)的典型游戲之一.參與者只須將手上的“金幣”(設(shè)“金幣”的半徑為1)拋向離身邊若干距離的階磚平面上,拋出的“金幣”若恰好落在任何一個(gè)階磚(邊長(zhǎng)為2.1的正方形)的范圍內(nèi)(不與階磚相連的線重疊),便可獲大獎(jiǎng).不少人被高額獎(jiǎng)金所吸引,紛紛參與此游戲但很少有人得到獎(jiǎng)品,請(qǐng)用所學(xué)的概率知識(shí)解釋這是為什么.

查看答案和解析>>

同步練習(xí)冊(cè)答案