已知{}(是正整數(shù))是首項(xiàng)是,公比是的等比數(shù)列。
(1)求和:① ②
(2)由(1)的結(jié)果歸納概括出關(guān)于正整數(shù)的一個(gè)結(jié)論;
(3)設(shè)是等比數(shù)列的前項(xiàng)的和,求
解:(1);
(2)歸納概括出關(guān)于正整數(shù)的一個(gè)結(jié)論是:已知{}(是正整數(shù))是首項(xiàng)是,公比是的等比數(shù)列,則
證明如下:
=
(3)因?yàn)?img width=103 height=47 src="http://thumb.zyjl.cn/pic1/1899/sx/89/254689.gif">,所以
=
=
同答案
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
規(guī)定,其中x∈R,m是正整數(shù),且=1,這是組合數(shù) (n、m是正整數(shù),且m≤n)的一種推廣。
(I)求的值。
(II)組合數(shù)的兩個(gè)性質(zhì);①;②。是否都能推廣到 (x∈R,m是正整數(shù))的情形?若能推廣,則寫(xiě)出推廣的形式并給出證明;若不能,則說(shuō)明理由;
(III)已知組合數(shù)是正整數(shù),證明:當(dāng)x∈Z,m是正整數(shù)時(shí),∈Z。查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知{an}(n是正整數(shù))是首項(xiàng)為a1,公比為q的等比數(shù)列.
(1)求和:;
(2)由(1)的結(jié)果歸納概括出關(guān)于正整數(shù)n的一個(gè)結(jié)論,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
規(guī)定=,其中x∈R,m是正整數(shù),且,這是組合數(shù)(n、m是正整數(shù),且m≤n)的一種推廣.
(1)求的值.
(2)設(shè)x>0,當(dāng)x為何值時(shí),取最小值?
(3)我們知道組合數(shù)具有如下兩個(gè)性質(zhì):
①=;②+=.
是否都能推廣到(x∈R,m是正整數(shù))的情形?若能推廣,請(qǐng)寫(xiě)出推廣的形式,并給出證明;若不能,則說(shuō)明理由.
(4)已知組合數(shù)是正整數(shù),證明當(dāng)x∈Z,m是正整數(shù)時(shí),∈Z.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省高二第一次月考理科數(shù)學(xué)試卷(解析版) 題型:填空題
已知(k是正整數(shù))的展開(kāi)式中,的系數(shù)小于120,求k=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:新課標(biāo)高三數(shù)學(xué)組合、排列與組合的綜合問(wèn)題專(zhuān)項(xiàng)訓(xùn)練(河北) 題型:填空題
已知(k是正整數(shù))的展開(kāi)式中,的系數(shù)小于120,求k=________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com