【題目】在平面直角坐標(biāo)系,.以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,點為上的動點,為的中點.
(1)請求出點軌跡的直角坐標(biāo)方程;
(2)設(shè)點的極坐標(biāo)為若直線經(jīng)過點且與曲線交于點,弦的中點為,求的取值范圍.
【答案】(1);(2)
【解析】
(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程為,可得點滿足.利用相關(guān)點法即可得出點軌跡的直角坐標(biāo)方程;
(2)根據(jù)已知條件求出直線的參數(shù)方程,把直線的參數(shù)方程代入,利用根與系數(shù)關(guān)系求出,由直線的參數(shù)方程中的幾何意義可將用表示,再將代入即可求出的取值范圍.
(1)因為的直角坐標(biāo)方程為,
所以點滿足.
設(shè),因為為的中點,
所以,,所以,,
所以,
整理得的軌跡方程為.
(2)因為直線過點,
所以直線的參數(shù)方程為(為參數(shù),為傾斜角,)
代入得,所以,,
所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)如圖,長方形材料中,已知,.點為材料內(nèi)部一點,于,于,且,. 現(xiàn)要在長方形材料中裁剪出四邊形材料,滿足,點、分別在邊,上.
(1)設(shè),試將四邊形材料的面積表示為的函數(shù),并指明的取值范圍;
(2)試確定點在上的位置,使得四邊形材料的面積最小,并求出其最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,直線與拋物線交于為拋物線上一點.
(1)若,求
(2)已知點,過點作直線分別交曲線于,證明:在點運動過程中,直線始終過定點,并求出該定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】絕大部分人都有患呼吸系統(tǒng)疾病的經(jīng)歷,現(xiàn)在我們調(diào)查患呼吸系統(tǒng)疾病是否和所處環(huán)境有關(guān).一共調(diào)查了人,患有呼吸系統(tǒng)疾病的人,其中人在室外工作,人在室內(nèi)工作.沒有患呼吸系統(tǒng)疾病的人,其中人在室外工作,人在室內(nèi)工作.
(1)現(xiàn)采用分層抽樣從室內(nèi)工作的居民中抽取一個容量為的樣本,將該樣本看成一個總體,從中隨機(jī)的抽取兩人,求兩人都有呼吸系統(tǒng)疾病的概率.
(2)你能否在犯錯誤率不超過的前提下認(rèn)為感染呼吸系統(tǒng)疾病與工作場所有關(guān);
附表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓:的離心率為,y軸于橢圓相交于A、B兩點,,C、D是橢圓上異于A、B的任意兩點,且直線AC、BD相交于點M,直線AD、BC相交于點N.
求橢圓的方程;
求直線MN的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的離心率為,橢圓上一點到左右兩個焦點的距離之和是4.
(1)求橢圓的方程;
(2)已知過的直線與橢圓交于兩點,且兩點與左右頂點不重合,若,求四邊形面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某少數(shù)民族的刺繡有著悠久的歷史,如圖4①,②,③,④為她們刺繡最簡單的四個圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個圖形包含f(n)個小正方形.
(1)求出f(5)的值;
(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出f(n)的表達(dá)式;
(3)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知若橢圓:()交軸于,兩點,點是橢圓上異于,的任意一點,直線,分別交軸于點,,則為定值.
(1)若將雙曲線與橢圓類比,試寫出類比得到的命題;
(2)判定(1)類比得到命題的真假,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com