選做題:不等式選講
(Ⅰ) 設(shè)a1,a2,a3均為正數(shù),且a1+a2+a3=m,求證
1
a1
+
1
a2
+
1
a3
9
m

(Ⅱ) 已知a,b都是正數(shù),x,y∈R,且a+b=1,求證:ax2+by2≥(ax+by)2
分析:(I)根據(jù)基本不等式的性質(zhì)可分別求得a1+a2+a3
1
a1
+
1
a2
+
1
a3
的最小值,兩式相乘即可求得 (
1
a1
+
1
a2
+
1
a3
)•m
的最小值,整理后原式得證.
(II)ax2+by2乘以一個(gè):“1=a+b”后得:(ax2+by2)(a+b)=a2x2+b2y2+ab(x2+y2)≥a2x2+b2y2+2abxy=(ax+by)2
解答:證明:(I)∵(
1
a1
+
1
a2
+
1
a3
)•m
=(a1+a2+a3)(
1
a1
+
1
a2
+
1
a3
)
≥3
3a1a2a3
•3
3
1
a1
1
a2
1
a3
=9

當(dāng)且僅當(dāng) a1=a2=a3=
m
3
時(shí)等號(hào)成立.
又∵m=a1+a2+a3>0,
1
a1
+
1
a2
+
1
a3
9
m

(II)ax2+by2=(ax2+by2)(a+b)=a2x2+b2y2+ab(x2+y2)≥a2x2+b2y2+2abxy=(ax+by)2.…(10分)
點(diǎn)評(píng):本題主要考查了基本不等式的應(yīng)用.解題的時(shí)候要特別注意等號(hào)成立的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,定點(diǎn)A(2,π),動(dòng)點(diǎn)B在直線ρsin(θ+
π
4
)=
2
2
上運(yùn)動(dòng),則線段AB的最精英家教網(wǎng)短長(zhǎng)度為
 

(不等式選講選做題)設(shè)函數(shù)f(x)=|x-1|+|x-2|,則f(x)的最小值為
 

(幾何證明選講選做題) 如圖所示,等腰三角形ABC的底邊AC長(zhǎng)為6,其外接圓的半徑長(zhǎng)為5,則三角形ABC的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選做題
A不等式選講
已知a∈R,若關(guān)于x的方程x2+x+|a-
1
4
|+|a|=0
有實(shí)根,求a的取值.
B坐標(biāo)系與參數(shù)方程
已知曲線C1、C2的極坐標(biāo)方程分別為ρcosθ=3,ρ=4cosθ(ρ≥0,0≤θ<
π
2
,求曲線C1、C2交點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選做題:不等式選講
(1)已知實(shí)數(shù)m>0,n>0,求證:
a2
m
+
b2
n
(a+b)2
m+n
;
(2)利用(1)的結(jié)論,求函數(shù)y=
1
x
+
4
1-x
(其中x∈(0,1))的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選做題:不等式選講.
已知a,b,c是不全相等的正數(shù),求證:
a+b
2
-
ab
a+b+c
3
-
3abc
3
2
,并指出等號(hào)成立的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•渭南三模)選做題(請(qǐng)考生在以下三個(gè)小題中任選一題作答,如果多做,則按所做的第一題評(píng)閱記分)
A、(不等式選講)若關(guān)于x的方程x2+4x+|a-1|=0有實(shí)根,則實(shí)數(shù)a的取值范圍為
[-3,5]
[-3,5]

B、(幾何證明選講)如圖,AD是⊙O的切線,AC是⊙O的弦,過(guò)C作AD的垂線,垂足為B,CB與⊙O相交于點(diǎn)E,AE平分∠CAB,且AE=2,則AC=
2
3
2
3
 
C、(坐標(biāo)系與參數(shù)方程)已知直線
x=1-2t
y=
3
+t.
(t為參數(shù))與圓ρ=4cos(θ-
π
3
)
相交于A、B兩點(diǎn),則|AB|=
4
4

查看答案和解析>>

同步練習(xí)冊(cè)答案