【題目】計(jì)算題
(1)已知cos( +x)= ,( <x< ),求 的值.
(2)若 , 是夾角60°的兩個(gè)單位向量,求 =2 + =﹣3 +2 的夾角.

【答案】
(1)解:∵ <x< ,∴x+ ∈( ,2π),再結(jié)合cos( +x)= >0,可得sin(x+ )=﹣ ,∴tan(x+ )=﹣

(cosα﹣sinα)= (sinα+cosα)=﹣ ,解得sinα= ,cosα=﹣ ,tanα=9.

= =﹣


(2)解: , 是夾角60°的兩個(gè)單位向量, =2 + =﹣3 +2

可得cos = = = =

=2 + =﹣3 +2 的夾角為:120°


【解析】(1.)由條件利用同角三角函數(shù)的基本關(guān)系求得 sin(x+ )的值,可得tan(x+ )的值,求出正弦函數(shù)與余弦函數(shù)值,即可求表達(dá)式的值. (2.)利用向量的數(shù)量積公式以及向量的模的運(yùn)算法則化簡(jiǎn)求解即可.
【考點(diǎn)精析】本題主要考查了數(shù)量積表示兩個(gè)向量的夾角的相關(guān)知識(shí)點(diǎn),需要掌握設(shè)、都是非零向量,,,的夾角,則才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,DC∥AB,PA=1,AB=2,PD=BC=
(1)求證:平面PAD⊥平面PCD;
(2)試在棱PB上確定一點(diǎn)E,使截面AEC把該幾何體分成的兩部分PDCEA與EACB的體積比為2:1;
(3)在(2)的條件下,求二面角E﹣AC﹣P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】盒中共有形狀大小完全相同的5個(gè)球,其中有2個(gè)紅球和3個(gè)白球.若從中隨機(jī)取2個(gè)球,則概率為 的事件是(
A.都不是紅球
B.恰有1個(gè)紅球
C.至少有1個(gè)紅球
D.至多有1個(gè)紅球

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2ax+5(a>1).
(1)若f(x)的定義域和值域均是[1,a],求實(shí)數(shù)a的值;
(2)若對(duì)任意的x1 , x2∈[1,a+1],總有|f(x1)﹣f(x2)|≤4,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)x,y滿足不等式組 ,若z=ax+y的最大值為2a+4,最小值為a+1,則實(shí)數(shù)a的取值范圍為(
A.[﹣1,2]
B.[﹣2,1]
C.[﹣3,﹣2]
D.[﹣3,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c.已知
(1)求角A的大;
(2)若 ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,
(1)求角B的大。
(2)若 ,求a+c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(12分)如圖,四面體ABCD中,ABC是正三角形,ACD是直角三角形,ABD=CBD,AB=BD.

(1)證明:平面ACD平面ABC;

(2)過(guò)AC的平面交BD于點(diǎn)E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角D–AE–C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方形ABCD中,AB= ,BC=1,E為線段DC上一動(dòng)點(diǎn),現(xiàn)將△AED沿AE折起,使點(diǎn)D在面ABC上的射影K在直線AE上,當(dāng)E從D運(yùn)動(dòng)到C,則K所形成軌跡的長(zhǎng)度為(

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案