設(shè)向量
a
=(sinx,
3
2
),
b
=(
2
3
,2cosx)且
a
b
,則銳角x為(  )
A、
π
6
B、
π
4
C、
π
3
D、
5
12
π
分析:利用向量共線的充要條件列出方程求出x.
解答:解:
a
b
?2cosxsinx=
3
2
2
3
?sin2x=1?x=
π
4

故選B.
點(diǎn)評(píng):本題考查向量共線的坐標(biāo)形式的充要條件:坐標(biāo)交叉相乘相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)對(duì)任意x∈R,都有f(1-x)=f(1+x)恒成立,設(shè)向量
a
=(sinx,2),
b
=(2sinx,
1
2
),
c
=(cos2x,1),
d
=(1,2),當(dāng)x∈[0,π]時(shí),求不等式f(
a
b
)>f(
c
d
)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f (x)=x2+mx+n對(duì)任意x∈R,都有f (-x)=f (2+x)成立,設(shè)向量
a
=( sinx,2 ),
b
=(2sinx,
1
2
),
c
=( cos2x,1 ),
d
=(1,2),
(Ⅰ)求函數(shù)f (x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x∈[0,π]時(shí),求不等式f (
a
b
)>f (
c
d
)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x) 對(duì)任意x∈R,都有f (1-x)=f (1+x)成立,設(shè)向量
a
=(sinx,2),
b
=(2sinx,
1
2
),
c
=(cos2x,1),
d
=(1,2).
(1)分別求
a
b
c
d
的取值范圍;
(2)當(dāng)x∈[0,π]時(shí),求不等式f(
a
b
)>f(
c
d
)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•揚(yáng)州二模)已知二次函數(shù)f(x)=x2-2x+6,設(shè)向量a=(sinx,2),b=(2sinx,
1
2
),c=(cos2x,1),d=(1,2).當(dāng)x∈[0,π]時(shí),不等式f(a•b)>f(c•d)的解集為
π
4
4
π
4
,
4

查看答案和解析>>

同步練習(xí)冊(cè)答案