已知y=f(x)是R上的偶函數(shù),當(dāng)x≥0 時(shí),f(x)=x(x+1),當(dāng)x<0 時(shí),f(x)=(  )
分析:設(shè)x<0,則-x>0,再由x>0時(shí),f(x)=x(x+1),求得f(-x),然后通過f(x)是R上的偶函數(shù)求得f(x).
解答:解:設(shè)x<0,則-x>0,
∵x>0時(shí),f(x)=x(x+1).
∴f(-x)=-x(-x+1)
∵y=f(x)是R上的偶函數(shù)
∴f(x)=f(-x)=-x(-x+1)=-x(1-x)
故選A
點(diǎn)評(píng):本題考查利用函數(shù)的奇偶性來(lái)求對(duì)稱區(qū)間上的解析式,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

13、已知y=f(x)是R上的偶函數(shù),且f(x)在(-∞,0]上是增函數(shù),若f(a)≥f(2),則a的取值范圍是
[-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

11、已知y=f(x)是R上的奇函數(shù),且x<0時(shí),f(x)=x+2x;則當(dāng)x>0時(shí),f(x)=
x-2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)是R上的可導(dǎo)函數(shù),對(duì)于任意的正實(shí)數(shù)t,都有函數(shù)g(x)=f(x+t)-f(x)在其定義域內(nèi)為減函數(shù),則函數(shù)y=f(x)的圖象可能為如圖中( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)是R上的增函數(shù),且f(2m)<f(9-m),則實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案