已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,長(zhǎng)軸長(zhǎng)為,直線交橢圓于不同的兩點(diǎn)
(1)求橢圓的方程;
(2)求的取值范圍;
(3)若直線不經(jīng)過(guò)橢圓上的點(diǎn),求證:直線的斜率互為相反數(shù).
(1);(2);(3)證明過(guò)程詳見(jiàn)解析.

試題分析:本題考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線方程、韋達(dá)定理等基礎(chǔ)知識(shí),考查用代數(shù)方法研究圓錐曲線的性質(zhì)以及數(shù)形結(jié)合的數(shù)學(xué)思想方法,考查運(yùn)算求解能力、綜合分析和解決問(wèn)題的能力.第一問(wèn),由長(zhǎng)軸長(zhǎng)得出的值,再由離心率得出的值,再計(jì)算出的值,從而得到橢圓的標(biāo)準(zhǔn)方程;第二問(wèn),由于直線與橢圓相交,所以列出方程組,經(jīng)過(guò)消參,得到關(guān)于的方程,因?yàn)橹本與橢圓有2個(gè)交點(diǎn),所以方程有2個(gè)實(shí)根,所以方程的判別式大于0,解出的取值范圍;第三問(wèn),將結(jié)論轉(zhuǎn)化為證明,寫(xiě)出點(diǎn)坐標(biāo),利用第二問(wèn)的關(guān)于的方程,用韋達(dá)定理寫(xiě)出兩根之和、兩根之積,先用兩點(diǎn)的斜率公式列出的斜率,再通分,將上述兩根之和兩根之積代入化簡(jiǎn)直到等于0為止.
試題解析:(Ⅰ)由題意知,,又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030559693551.png" style="vertical-align:middle;" />,解得
故橢圓方程為.                        4分
(Ⅱ)將代入并整理得,
,解得.      7分
(Ⅲ)設(shè)直線的斜率分別為,只要證明.
設(shè),
.    9分

分子


所以直線的斜率互為相反數(shù).     14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),離心率,右焦點(diǎn)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的上頂點(diǎn)為,在橢圓上是否存在點(diǎn),使得向量共線?若存在,求直線的方程;若不存在,簡(jiǎn)要說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的左右兩焦點(diǎn)分別為是橢圓上一點(diǎn),且在軸上方,

(1)求橢圓的離心率的取值范圍;
(2)當(dāng)取最大值時(shí),過(guò)的圓的截軸的線段長(zhǎng)為6,求橢圓的方程;
(3)在(2)的條件下,過(guò)橢圓右準(zhǔn)線上任一點(diǎn)引圓的兩條切線,切點(diǎn)分別為.試探究直線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),請(qǐng)求出該定點(diǎn);否則,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線關(guān)于軸對(duì)稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)P(1,2),,均在拋物線上.

(1)求該拋物線方程;
(2)若AB的中點(diǎn)坐標(biāo)為,求直線AB方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上的拋物線過(guò)點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若拋物線與直線交于、兩點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y2=-x與直線y=k(x+1)交于A、B兩點(diǎn).
(1)求證:OA⊥OB;
(2)當(dāng)DAOB的面積等于時(shí),求k的值. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,斜率為的直線過(guò)拋物線的焦點(diǎn),與拋物線交于兩點(diǎn)A、B, M為拋物線弧AB上的動(dòng)點(diǎn).

(Ⅰ)若,求拋物線的方程;
(Ⅱ)求△ABM面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知雙曲線的左右焦點(diǎn)分別為,為雙曲線的中心,是雙曲線右支上的點(diǎn),的內(nèi)切圓的圓心為,且圓軸相切于點(diǎn),過(guò)作直線的垂線,垂足為,若為雙曲線的離心率,則(   )
A.B.
C.D.關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

過(guò)拋物線x2=2py(p>0)的焦點(diǎn)作斜率為1的直線與該拋物線交于A,B兩點(diǎn),A,B在x軸上的正射影分別為D,C.若梯形ABCD的面積為12,則P="__________" .

查看答案和解析>>

同步練習(xí)冊(cè)答案