已知橢圓的焦點為,,且經(jīng)過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過的直線與橢圓交于、兩點,問在橢圓上是否存在一點,使四邊形為平行四邊形,若存在,求出直線的方程,若不存在,請說明理由.
(Ⅰ)橢圓的方程為;(Ⅱ)存在符合條件的直線的方程為:.
解析試題分析:(Ⅰ)已知橢圓的焦點為,,且經(jīng)過點,求橢圓的方程,顯然,而正好是過焦點,且垂直于軸的弦的端點,故,再由,解出即可;(Ⅱ)設(shè)過的直線與橢圓交于、兩點,問在橢圓上是否存在一點,使四邊形為平行四邊形,若存在,求出直線的方程,若不存在,請說明理由,此題是探索性命題,一般都是假設(shè)存在符合條件的點,根據(jù)題意,若能求出直線的方程,就存在,若不能求出直線的方程,就不存在,此題設(shè)直線的方程為,代入方程得的中點為 , 由于四邊形為平行四邊形,與的中點重合,得點坐標(biāo),代入橢圓方程求出的值,從而得存在符合條件的直線的方程為:.
試題解析:(Ⅰ) 3分
, 5分
橢圓的方程為 7分
(Ⅱ)假設(shè)存在符合條件的點,
設(shè)直線的方程為 8分
由得:,,
,
的中點為 10分
四邊形為平行四邊形,與的中點重合,即:
13分
把點坐標(biāo)代入橢圓的方程得:
解得 14分
存在符合條件的直線
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線,直線與E交于A、B兩點,且,其中O為原點.
(1)求拋物線E的方程;
(2)點C坐標(biāo)為,記直線CA、CB的斜率分別為,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線的焦點為F,過F的直線交拋物線于M、N兩點,其準(zhǔn)線與x軸交于K點.
(1)求證:KF平分∠MKN;
(2)O為坐標(biāo)原點,直線MO、NO分別交準(zhǔn)線于點P、Q,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,過點的兩直線與拋物線相切于A、B兩點, AD、BC垂直于直線,垂足分別為D、C.
(1)若,求矩形ABCD面積;
(2)若,求矩形ABCD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線上任意一點到直線的距離是它到點距離的倍;曲線是以原點為頂點,為焦點的拋物線.
(Ⅰ)求,的方程;
(Ⅱ)過作兩條互相垂直的直線,其中與相交于點,與相交于點,求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直線y=kx+b與橢圓交于A、B兩點,記△AOB的面積為S.
(1)求在k=0,0<b<1的條件下,S的最大值;
(2)當(dāng)|AB|=2,S=1時,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線與橢圓有公共焦點,且橢圓過點.
(1)求橢圓方程;
(2)點、是橢圓的上下頂點,點為右頂點,記過點、、的圓為⊙,過點作⊙ 的切線,求直線的方程;
(3)過橢圓的上頂點作互相垂直的兩條直線分別交橢圓于另外一點、,試問直線是否經(jīng)過定點,若是,求出定點坐標(biāo);若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在坐標(biāo)原點,焦點在x軸上,橢圓C上的點到焦點距離的最大值為3,最小值為1.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若直線l:與橢圓C相交于A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點。求證: 直線l過定點,并求出該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)拋物線的焦點為,準(zhǔn)線為,,以為圓心的圓與相切于點,的縱坐標(biāo)為,是圓與軸除外的另一個交點.
(I)求拋物線與圓的方程;
(II)過且斜率為的直線與交于兩點,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com