設a∈R,函數(shù)f(x)=x3+ax2+(a-3)x的導函數(shù)是f′(x),若f′(x)是偶函數(shù),則曲線y=f(x)在原點處的切線方程為                                                                   (  )
A.y=-3xB.y=-2x
C.y=3xD.y=2x
A

分析:先由求導公式求出f′(x),根據(jù)偶函數(shù)的性質(zhì),可得f′(-x)=f′(x),從而求出a的值,然后利用導數(shù)的幾何意義求出切線的斜率,進而寫出切線方程.
解:f′(x)=3x2+2ax+(a-3),
∵f′(x)是偶函數(shù),
∴3(-x)2+2a(-x)+(a-3)=3x2+2ax+(a-3),
解得a=0,
∴k=f′(0)=-3,
∴切線方程為y=-3x.
故選A.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
,其中為正實數(shù)
(Ⅰ)當時,求的極值點;
(Ⅱ)若上的單調(diào)函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線與曲線相切(是自然對數(shù)的底數(shù)),則的值是
A.B.C.+1D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=-x3-ax2+b2x+1(a、b∈R).
(1)若a=1,b=1,求f(x)的極值和單調(diào)區(qū)間;
(2)已知x1,x2為f(x)的極值點,且|f(x1)-f(x2)|=|x1-x2|,若當x∈[-1,1]時,函數(shù)y=f(x)的圖象上任意一點的切線斜率恒小于m,求m的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設f0(x)=sin x,f1(x)=f′0(x),f2(x)=f′1(x),…,fn1(x)=f′n(x)(n∈N),則f2009(x)=(  )
A.sin x B.-sin x
C.cos xD.-cos x

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分15分)已知函數(shù)
(1)若函數(shù)上的增函數(shù),求的取值范圍;
(2)證明:當時,不等式對任意恒成立;
(3)證明:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

有一個長度為5 m的梯子貼靠在筆直的墻上,假設其下端沿地板以3 m/s的速度離開墻腳滑動,求當其下端離開墻腳1.4 m時,梯子上端下滑的速度為_______

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)的圖象過點P( 1,2),且在點P處的切線與直線x-3y=0垂直.
(2) 若,試求函數(shù)f(x)的單調(diào)區(qū)間;
(3) 若a>0,b>0且(,m),(n,)是f(x)的單調(diào)遞增區(qū)間,試求n-m-2c的范圍

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是函數(shù)在點處取極值的( )
A. 充分不必要條件             B 必要不充分條件
C. 充要條件                   D. 既不充分也不必要條件

查看答案和解析>>

同步練習冊答案