一袋中有6個(gè)黑球,4個(gè)白球.
(1)依次取出3個(gè)球,不放回,已知第一次取出的是白球,求第三次取到黑球的概率;
(2)有放回地依次取出3球,已知第一次取的是白球,求第三次取到黑球的概率;
(3)有放回地依次取出3球,求取到白球個(gè)數(shù)X的分布列、期望和方差.
(1)(2)(3)

試題分析:(1)法一:設(shè)A=“第一次取到白球”,B=“第二次取到白球”,C=“第三次取到白球”,則在A發(fā)生的條件下,袋中只剩6個(gè)黑球和3個(gè)白球,
.        4分    
法二:同上.      4分
(2)∵每次取之前袋中球的情況不變,
∴n次取球的結(jié)果互不影響.∴        6分
(3)設(shè)“摸一次球,摸到白球”為事件D,則
∵這三次摸球互不影響,顯然這個(gè)試驗(yàn)為獨(dú)立重復(fù)試驗(yàn),X服從二項(xiàng)分布,即X~B(3,).
 , ,
 ,          10分
∴X的分布列為:
X
0
1
2
3
P




顯然這個(gè)試驗(yàn)為獨(dú)立重復(fù)試驗(yàn),X服從二項(xiàng)分布,即X~B(3,).       12分
所以    14分
點(diǎn)評(píng):此類(lèi)問(wèn)題運(yùn)算比較麻煩,難度一般不大,考查學(xué)生分析問(wèn)題、轉(zhuǎn)化問(wèn)題、解決問(wèn)題的能力和運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

計(jì)算機(jī)考試分理論考試與實(shí)際操作考試兩部分進(jìn)行,每部分考試成績(jī)只記“合格”與“不合格”,兩部分考試都“合格”者,則計(jì)算機(jī)考試“合格“并頒發(fā)”合格證書(shū)“.甲、乙、丙三人在理論考試中“合格”的概率依次為,在實(shí)際操作考試中“合格”的概率依次為,所有考試是否合格相互之間沒(méi)有影響。
(1)假設(shè)甲、乙、丙3人同時(shí)進(jìn)行理論與實(shí)際操作兩項(xiàng)考試,誰(shuí)獲得“合格證書(shū)”的可能性大?
(2)求這3人進(jìn)行理論與實(shí)際操作兩項(xiàng)考試后,恰有2人獲得“合格證書(shū)”的概率;
(3)用X表示甲、乙、丙3人計(jì)算機(jī)考試獲“合格證書(shū)”的人數(shù),求X的分布列和數(shù)學(xué)期望EX。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

計(jì)算機(jī)畢業(yè)考試分為理論與操作兩部分,每部分考試成績(jī)只記“合格”與“不合格”,只有當(dāng)兩部分考試都“合格”者,才頒發(fā)計(jì)算機(jī)“合格證書(shū)”.甲、乙兩人在理論考試中“合格”的概率依次為,在操作考試中“合格”的概率依次為,所有考試是否合格,相互之間沒(méi)有影響.則甲、乙進(jìn)行理論與操作兩項(xiàng)考試后,恰有1人獲得“合格證書(shū)”的概率       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

甲、乙兩人參加某種選拔測(cè)試.在備選的道題中,甲答對(duì)其中每道題的概率都是,乙能答對(duì)其中的道題.規(guī)定每次考試都從備選的道題中隨機(jī)抽出道題進(jìn)行測(cè)試,答對(duì)一題加分,答錯(cuò)一題(不答視為答錯(cuò))減分,至少得分才能入選.
(1)求甲得分的數(shù)學(xué)期望;
(2)求甲、乙兩人同時(shí)入選的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

投擲兩顆骰子,其向上的點(diǎn)數(shù)分別為,則復(fù)數(shù)為純虛數(shù)的概率為(   )
A.B.    C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

.甲、乙兩人練習(xí)射擊, 命中目標(biāo)的概率分別為, 甲、乙兩人各射擊一次,有下列說(shuō)法: ① 目標(biāo)恰好被命中一次的概率為 ;② 目標(biāo)恰好被命中兩次的概率為; ③ 目標(biāo)被命中的概率為; ④ 目標(biāo)被命中的概率為 。以上說(shuō)法正確的序號(hào)依次是
A.②③   B.①②③C.②④D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

有一道競(jìng)賽題,甲解出它的概率為,乙解出它的概率為,丙解出它的概率為,則

2,4,6

 
甲、乙、丙三人獨(dú)立解答此題,只有1人解出的概率是(   )

    A.            B.            C.            D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

從一副不含大小王的52張撲克牌中不放回地抽取2次,每次抽一張,已知第一次抽到A,則第二次也抽到A的概率為            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

某大街在甲、乙、丙三處設(shè)有紅綠燈,汽車(chē)在這三處因綠燈而通行的概率分別為,,,則汽車(chē)在這三處因遇紅燈而停車(chē)一次的概率為( )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案