【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個(gè)零點(diǎn),證明.
【答案】(1)見(jiàn)解析(2)見(jiàn)解析
【解析】試題分析:(1)分兩種情況討論的范圍,求出,分別令求得的范圍,可得函數(shù)增區(qū)間, 求得的范圍,可得函數(shù)的減區(qū)間;(2)函數(shù)有兩個(gè)零點(diǎn)分別為,不妨設(shè)則, , ,原不等式等價(jià)于令,只需證明證,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出的最大值即可得結(jié)論.
試題解析:1)
當(dāng)時(shí), ,所以在上單調(diào)遞減;
當(dāng)時(shí), ,得
都有, 在上單調(diào)遞減;
都有, 在上單調(diào)遞增.
綜上:當(dāng)時(shí), 在上單調(diào)遞減,無(wú)單調(diào)遞增區(qū)間;
當(dāng)時(shí), 在單調(diào)遞減, 在上單調(diào)遞增.
(2)函數(shù)有兩個(gè)零點(diǎn)分別為,不妨設(shè)則
,
要證:
只需證: 只需證:
只需證:
只需證:
只需證:
令,即證
設(shè),則,
即函數(shù)在單調(diào)遞減
則
即得
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題:,命題:
(1)若是的充分條件,求實(shí)數(shù)的取值范圍;
(2)若,為真命題,為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】目前,某市出租車的計(jì)價(jià)標(biāo)準(zhǔn)是:路程以內(nèi)(含)按起步價(jià)8元收取,超過(guò)后的路程按1.9元收取,但超過(guò)后的路程需加收的返空費(fèi)(即單價(jià)為元)
(1)若,將乘客搭乘一次出租車的費(fèi)用(單位:元)表示為行程(單位:)的分段函數(shù);
(2)某乘客行程為,他準(zhǔn)備先乘一輛出租車行駛,然后再換乘另一輛出租車完成余下路程,請(qǐng)問(wèn):他這樣做是否比只乘一輛出租車完成全程更省錢?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義域?yàn)?/span>的函數(shù)滿足:對(duì)于任意的實(shí)數(shù)都有 成立,且當(dāng)時(shí),.
(Ⅰ)判斷函數(shù)的奇偶性,并證明你的結(jié)論;
(Ⅱ)證明在上為減函數(shù);
(Ⅲ)若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從原點(diǎn)向圓 作兩條切線,切點(diǎn)分別為,,記切線,的斜率分別為,.
(Ⅰ)若圓心,求兩切線,的方程;
(Ⅱ)若,求圓心的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)、的坐標(biāo)分別是,,直線,相交于點(diǎn),且它們的斜率之積為.
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)若過(guò)點(diǎn)的直線交動(dòng)點(diǎn)的軌跡于、兩點(diǎn), 且為線段,的中點(diǎn),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時(shí),f(x)=-x2+ax.
(1)若a=-2,求函數(shù)f(x)的解析式;
(2)若函數(shù)f(x)為R上的單調(diào)減函數(shù),
①求a的取值范圍;
②若對(duì)任意實(shí)數(shù)m,f(m-1)+f(m2+t)<0恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其圖像與軸切于非原點(diǎn)的一點(diǎn),且該函數(shù)的極小值是,那么切點(diǎn)坐標(biāo)為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下列說(shuō)法:
①命題“x0∈R,x+1>3x0”的否定是“x∈R,x2+1<3x”;
②已知p,q為兩個(gè)命題,若“p∨q”為假命題,則“¬p∧¬q”為真命題
③“a>2”是“a>5”的充分不必要條件
④“若xy=0,則x=0且y=0”的逆否命題為真命題
其中正確說(shuō)法的個(gè)數(shù)為( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com