設(shè)等差數(shù)列的首項(xiàng)為1,其前n項(xiàng)和為,是公比為正整數(shù)的等比數(shù)列,其首項(xiàng)為3,前n項(xiàng)和為. 若.
(1)求,的通項(xiàng)公式;(7分)
(2)求數(shù)列的前n項(xiàng)和.(5分)

(1) (2)

解析試題分析:解:(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q
由已知


考點(diǎn):數(shù)列的通項(xiàng)公式和求和
點(diǎn)評(píng):解決的關(guān)鍵是利用等差數(shù)列和等比數(shù)列的通項(xiàng)公式來得到通項(xiàng)公式,并利用分組求和得到結(jié)論,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)已知等差數(shù)列{an}的公差d > 0,且是方程x2-14x+45=0的兩根,求數(shù)列通項(xiàng)公式(2)設(shè),數(shù)列{bn}的前n項(xiàng)和為Sn,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列滿足,數(shù)列滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和;
(3)若,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知公差大于零的等差數(shù)列,前項(xiàng)和為. 且滿足.
(Ⅰ)求數(shù)列的通項(xiàng)公式;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

等差數(shù)列中,成等比數(shù)列,
(1)求數(shù)列的通項(xiàng)公式; (2)求前20項(xiàng)的和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)列中,,構(gòu)成公比不等于1的等比數(shù)列.
(1)求證數(shù)列是等差數(shù)列;
(2)求的值;
(3)數(shù)列的前n項(xiàng)和為,若對(duì)任意均有成立,求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)等差數(shù)列的前n項(xiàng)的和為,且
(1)求的通項(xiàng)公式;
(2)令,求的前項(xiàng)和
(3)若不等式對(duì)于恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知{an}是一個(gè)等差數(shù)列,且a2=1,a5=-5.
(1)求數(shù)列{an}的通項(xiàng)an
(2)求{an}前n項(xiàng)和Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知各項(xiàng)都不相等的等差數(shù)列的前6項(xiàng)和為60,且的等比中項(xiàng).
( I ) 求數(shù)列的通項(xiàng)公式;
(II) 若數(shù)列滿足,且,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案