【題目】意大利數(shù)學(xué)家列昂納多·斐波那契是第一個(gè)研究了印度和阿拉伯?dāng)?shù)學(xué)理論的歐洲人,斐波那契數(shù)列被譽(yù)為是最美的數(shù)列,斐波那契數(shù)列滿(mǎn)足:,,.若將數(shù)列的每一項(xiàng)按照下圖方法放進(jìn)格子里,每一小格子的邊長(zhǎng)為1,記前項(xiàng)所占的格子的面積之和為,每段螺旋線與其所在的正方形所圍成的扇形面積為,則下列結(jié)論正確的是(

A.B.

C.D.

【答案】ABD

【解析】

根據(jù)題中遞推公式,求出,,數(shù)列的前項(xiàng)和,數(shù)列的奇數(shù)項(xiàng)和,與選項(xiàng)對(duì)比即可.

對(duì)于A選項(xiàng),因?yàn)殪巢瞧鯏?shù)列總滿(mǎn)足,

所以,

,

類(lèi)似的有,,

累加得,

由題知,

故選項(xiàng)A正確,

對(duì)于B選項(xiàng),因?yàn)?/span>,,,

類(lèi)似的有,

累加得,

故選項(xiàng)B正確,

對(duì)于C選項(xiàng),因?yàn)?/span>,,

類(lèi)似的有,

累加得,

故選項(xiàng)C錯(cuò)誤,

對(duì)于D選項(xiàng),可知扇形面積,

,

故選項(xiàng)D正確,

故選:ABD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城鎮(zhèn)社區(qū)為了豐富轄區(qū)內(nèi)廣大居民的業(yè)余文化生活,創(chuàng)建了社區(qū)“文化丹青”大型活動(dòng)場(chǎng)所,配備了各種文化娛樂(lè)活動(dòng)所需要的設(shè)施,讓廣大居民健康生活、積極向上.社區(qū)最近四年內(nèi)在“文化丹青”上的投資金額統(tǒng)計(jì)數(shù)據(jù)如表:(為了便于計(jì)算,把2015年簡(jiǎn)記為5,其余以此類(lèi)推)

年份(年)

5

6

7

8

投資金額(萬(wàn)元)

15

17

21

27

(1)利用所給數(shù)據(jù),求出投資金額與年份之間的回歸直線方程;

(2)預(yù)測(cè)該社區(qū)在2019年在“文化丹青”上的投資金額.

(附:對(duì)于一組數(shù)據(jù), ,…, ,其回歸直線的斜率和截距的最小二乘估計(jì)分別為, .)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了展示中華漢字的無(wú)窮魅力,傳遞傳統(tǒng)文化,提高學(xué)習(xí)熱情,某校開(kāi)展《中國(guó)漢字聽(tīng)寫(xiě)大會(huì)》的活動(dòng).為響應(yīng)學(xué)校號(hào)召,2(9)班組建了興趣班,根據(jù)甲、乙兩人近期8次成績(jī)畫(huà)出莖葉圖,如圖所示(把頻率當(dāng)作概率).

(1)求甲、乙兩人成績(jī)的平均數(shù)和中位數(shù);

(2)現(xiàn)要從甲、乙兩人中選派一人參加比賽,從統(tǒng)計(jì)學(xué)的角度,你認(rèn)為派哪位學(xué)生參加比較合適?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓

(Ⅰ)若圓C與x軸相切,求圓C的方程;

(Ⅱ)已知,圓與x軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)).過(guò)點(diǎn)任作一條直線與圓相交于兩點(diǎn)A,B.問(wèn):是否存在實(shí)數(shù)a,使得=?若存在,求出實(shí)數(shù)a的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,島、相距海里上午9點(diǎn)整有一客輪在島的北偏西且距島 海里的沿直線方向勻速開(kāi)往島,在島停留分鐘后前往市.上午測(cè)得客輪位于島的北偏西且距島 海里的,此時(shí)小張從島乘坐速度為海里/小時(shí)的小艇沿直線方向前往島換乘客輪去市.

)若,問(wèn)小張能否乘上這班客輪?

)現(xiàn)測(cè)得, 已知速度為海里/小時(shí)()的小艇每小時(shí)的總費(fèi)用為()元,若小張由島直接乘小艇去市,則至少需要多少費(fèi)用?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l方程為(m+2x-m+1y-3m-7=0,mR

(Ⅰ)求證:直線l恒過(guò)定點(diǎn)P,并求出定點(diǎn)P的坐標(biāo);

(Ⅱ)若直線lx軸,y軸上的截距相等,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐S-ABC中,平面SAB⊥平面SBC,ABBC,AS=AB,點(diǎn)E,F,G分別在棱SASB,SC上,且平面EFG∥平面ABC,點(diǎn)ESA的中點(diǎn).求證:

(Ⅰ)AF⊥平面SBC

(Ⅱ)SABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某印刷廠為了研究單冊(cè)書(shū)籍的成本(單位:元)與印刷冊(cè)數(shù)(單位:千冊(cè))之間的關(guān)系,在印制某種書(shū)籍時(shí)進(jìn)行了統(tǒng)計(jì),相關(guān)數(shù)據(jù)見(jiàn)下表:

根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲: ,方程乙: .

(1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù).

①完成下表(計(jì)算結(jié)果精確到0.1);

②分別計(jì)算模型甲與模型乙的殘差平方和,并通過(guò)比較的大小,判斷哪個(gè)模型擬合效果更好.

(2)該書(shū)上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進(jìn)行二次印刷,根據(jù)市場(chǎng)調(diào)查,新需求量為10千冊(cè),若印刷廠以每?jī)?cè)5元的價(jià)格將書(shū)籍出售給訂貨商,求印刷廠二次印刷10千冊(cè)獲得的利潤(rùn)?(按(1)中擬合效果較好的模型計(jì)算印刷單冊(cè)書(shū)的成本).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=|xa|,a<0.

(1)證明:f(x)+f≥2;

(2)若不等式f(x)+f(2x)<的解集非空,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案