已知甲盒內(nèi)有大小相同的1個紅球和3個黑球,乙盒內(nèi)有大小相同的2個紅球和4個黑球,現(xiàn)從甲、乙兩個盒內(nèi)各任取2個球.
(1)求取出的4個球均為黑球的概率.
(2)求取出的4個球中恰有1個紅球的概率.
(1)    (2)
(1)設(shè)“從甲盒內(nèi)取出的2個球均為黑球”為事件A,“從乙盒內(nèi)取出的2個球均為黑球”為事件B.由于事件A,B相互獨(dú)立,
且P(A)==,P(B)==.
所以取出的4個球均為黑球的概率為
P(AB)=P(A)·P(B)=×=.
(2)設(shè)“從甲盒內(nèi)取出的2個球均為黑球;從乙盒內(nèi)取出的2個球中,1個是紅球,1個是黑球”為事件C,“從甲盒內(nèi)取出的2個球中,1個是紅球,1個是黑球;從乙盒內(nèi)取出的2個球均為黑球”為事件D.由于事件C,D互斥,
且P(C)=·=,
P(D)=·=.
所以取出的4個球中恰有1個紅球的概率為
P(C+D)=P(C)+P(D)=+=.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙、丙三個車床加工的零件分別為350個,700個,1050個,現(xiàn)用分層抽樣的方法隨機(jī)抽取6個零件進(jìn)行檢驗(yàn).
(1)求從甲、乙、丙三個車床中抽取的零件的件數(shù);
(2)從抽取的6個零件中任意取出2個,已知這兩個零件都不是甲車床加工的,求其中至少有一個是乙車床加工的零件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

,則的概率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某產(chǎn)品的三個質(zhì)量指標(biāo)分別為x,y,z,用綜合指標(biāo)S=x+y+z評價該產(chǎn)品的等級.若S≤4,則該產(chǎn)品為一等品.現(xiàn)從一批該產(chǎn)品中,隨機(jī)抽取10件產(chǎn)品作為樣本,其質(zhì)量指標(biāo)列表如下:
產(chǎn)品編號
A1
A2
A3
A4
A5
質(zhì)量指標(biāo)(x,y,z)
(1,1,2)
(2,1,1)
(2,2,2)
(1,1,1)
(1,2,1)
 
 
 
 
 
 
產(chǎn)品編號
A6
A7
A8
A9
A10
質(zhì)量指標(biāo)(x,y,z)
(1,2,2)
(2,1,1)
(2,2,1)
(1,1,1)
(2,1,2)
(1)利用上表提供的樣本數(shù)據(jù)估計該批產(chǎn)品的一等品率;
(2)在該樣本的一等品中,隨機(jī)抽取2件產(chǎn)品,
①用產(chǎn)品編號列出所有可能的結(jié)果;
②設(shè)事件B為“在取出的2件產(chǎn)品中,每件產(chǎn)品的綜合指標(biāo)S都等于4”,求事件B發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

從{1,2,3,4,5}中隨機(jī)選取一個數(shù)為a,從{1,2,3}中隨機(jī)選取一個數(shù)為b,則b>a的概率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

把一顆骰子拋擲兩次,觀察出現(xiàn)的點(diǎn)數(shù),并記第一次出現(xiàn)的點(diǎn)數(shù)為a,第二次出現(xiàn)的點(diǎn)數(shù)為b,組成方程組則(1)在出現(xiàn)點(diǎn)數(shù)有2的情況下,方程組只有一個解的概率為      .
(2)只有正數(shù)解的概率為     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某射手在一次射擊中,射中10環(huán)、9環(huán)、8環(huán)的概率分別是0.20,0.30,0.10,則此射手在一次射擊中不夠8環(huán)的概率為(  )
A.0.40B.0.30
C.0.60D.0.90

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

盒子里共有大小相同的3只白球,1只黑球.若從中隨機(jī)摸出兩只球,則它們顏色相同的概率是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)a∈{1,2,3},b∈{2,4,6},則函數(shù)y=是減函數(shù)的概率為  

查看答案和解析>>

同步練習(xí)冊答案