給出如下四個(gè)命題:
①若向量
a
,
b
滿(mǎn)足
a
?
b
<0,則
a
b
的夾角為鈍角;
②命題“若a>b,則aa>2b-1”的否命題為“若a≤b,則aa≤2b-1”;
③“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1≤1”;
④向量
a
,
b
共線
的充要條件:存在實(shí)數(shù)λ,使得
b
a

其中正確的命題的序號(hào)是( 。
A、①②④B、②④C、②③D、②
分析:①若向量
a
,
b
滿(mǎn)足
a
b
<0,則
a
b
的夾角可能為鈍角或平角;
②根據(jù)原命題的否命題的意義即可判斷出;
③根據(jù)全稱(chēng)命題的否定是特稱(chēng)命題即可判斷出;
④根據(jù)向量共線定理的充要條件即可判斷出.
解答:解:①若向量
a
b
滿(mǎn)足
a
b
<0,則
a
b
的夾角可能為鈍角或平角,因此不正確;
②根據(jù)原命題的否命題的意義可知:命題“若a>b,則aa>2b-1”的否命題為“若a≤b,則aa≤2b-1”,正確;
③“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1<1”,因此③不正確;
④向量
a
,
b
共線
的充要條件:存在實(shí)數(shù)λ,μ,使得μ
b
a
,因此④不正確.
綜上可知:只有②正確.
故選:D.
點(diǎn)評(píng):本題考查了數(shù)量積的夾角公式、四種命題之間的關(guān)系、命題的否定、向量共線定理的充要條件等基礎(chǔ)知識(shí)與基本技能方法,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出如下四個(gè)命題
①對(duì)于任意的實(shí)數(shù)α和β,等式cos(α+β)=cosαcosβ-sinαsinβ恒成立;
②存在實(shí)數(shù)α,β,使等式cos(α+β)=cosαcosβ+sinαsinβ能成立;
③公式tan(α+β)=
tanα+tanβ
1-tanα•tanβ
成立的條件是α≠kπ+
π
2
(k∈Z)且β≠kπ+
π
2
(k∈Z);
④不存在無(wú)窮多個(gè)α和β,使sin(α-β)=sinαcosβ-cosαsinβ;
其中假命題是(  )
A、①②B、②③C、③④D、②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x|x|+bx+c(b,c∈R),給出如下四個(gè)命題:①若c=0,則f(x)為奇函數(shù);②若b=0,則函數(shù)f(x)在R上是增函數(shù);③函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(0,c)成中心對(duì)稱(chēng)圖形;④關(guān)于x的方程f(x)=0最多有兩個(gè)實(shí)根.其中正確的命題
①②③
①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

現(xiàn)給出如下四個(gè)命題:
①過(guò)點(diǎn)A(4,1)且在兩坐標(biāo)軸上的截距相等的直線共有兩條;
②若平面α內(nèi)的兩條直線都與平面β平行,則α∥β;
③已知α∩β=l,若α內(nèi)的直線m垂直于l,則α⊥β;
④已知α⊥β,α∩β=l,若α內(nèi)的直線m與l不垂直,則m與β也不垂直.
請(qǐng)你寫(xiě)出其中所有真命題的序號(hào):
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•閘北區(qū)一模)在實(shí)數(shù)集R中,我們定義的大小關(guān)系“>”為全體實(shí)數(shù)排了一個(gè)“序”.類(lèi)似的,我們?cè)趶?fù)數(shù)集C上也可以定義一個(gè)稱(chēng)為“序”的關(guān)系,記為“>”.定義如下:對(duì)于任意兩個(gè)復(fù)數(shù)z1=a1+b1i,z2=a2+b2i(a1,a2,b1,b2∈R),z1>z2當(dāng)且僅當(dāng)“a1>a2”或“a1=a2且b1>b2”.
按上述定義的關(guān)系“>”,給出如下四個(gè)命題:
①1>i>0; 
②若z1>z2,z2>z3,則z1>z3;
③若z1>z2,則,對(duì)于任意z∈C,z1+z>z2+z;
④對(duì)于復(fù)數(shù)z>0,若z1>z2,則zz1>zz2
其中真命題的序號(hào)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出如下四個(gè)命題:
①若a≥0,b≥0,則
2(a2+b2)
≥a+b

②若ab>0,則|a+b|<|a|+|b|;
③若a>0,b>0,a+b>4,ab>4,則a>2,b>2;
④若a,b,c,∈R,且ab+bc+ca=1,則(a+b+c)2≥3;
其中正確的命題是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案