(本題滿分14分)

已知函數(shù),其中.定義數(shù)列如下:,.

(I)當(dāng)時,求的值;

(II)是否存在實數(shù)m,使構(gòu)成公差不為0的等差數(shù)列?若存在,請求出實數(shù)的值,若不存在,請說明理由;

(III)求證:當(dāng)時,總能找到,使得.

 

【答案】

 

(1)  ,.

(2) 

(3)  略

【解析】解:(I)因為,,所以

,.                   …………4分

(II)方法一:假設(shè)存在實數(shù),使得構(gòu)成公差不為0的等差數(shù)列.

由(I)得到,,

.因為成等差數(shù)列,

所以,           …………6分

所以,,       化簡得,

解得(舍),.  …………8分

經(jīng)檢驗,此時的公差不為0,

所以存在,使構(gòu)成公差不為0的等差數(shù)列.  …………9分

方法二:因為成等差數(shù)列,

所以,   …………6分

,

所以,即.

因為,所以解得.    …………8分

經(jīng)檢驗,此時的公差不為0.

所以存在,使構(gòu)成公差不為0的等差數(shù)列.  …………9分

  (III)因為,

,  所以令.

    ,

     ……

     ,將上述不等式全部相加得,即,

因此只需取正整數(shù),就有.………14分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分
A.選修4-4:極坐標(biāo)與參數(shù)方程在極坐標(biāo)系中,直線l 的極坐標(biāo)方程為θ=
π
3
(ρ∈R ),以極點為坐標(biāo)原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,曲線C的參數(shù)方程為
x=2cosα
y=1+cos2α
(α 參數(shù)).求直線l 和曲線C的交點P的直角坐標(biāo).
B.選修4-5:不等式選講
設(shè)實數(shù)x,y,z 滿足x+y+2z=6,求x2+y2+z2 的最小值,并求此時x,y,z 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABEAEEBBC=2,上的點,且BF⊥平面ACE

(1)求證:AEBE;(2)求三棱錐DAEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題

(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求實數(shù)m的值

(Ⅱ)若ACRB,求實數(shù)m的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題

(本題滿分14分)

已知點是⊙上的任意一點,過垂直軸于,動點滿足。

(1)求動點的軌跡方程; 

(2)已知點,在動點的軌跡上是否存在兩個不重合的兩點,使 (O是坐標(biāo)原點),若存在,求出直線的方程,若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題

(本題滿分14分)已知函數(shù).

(1)求函數(shù)的定義域;

(2)判斷的奇偶性;

(3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使

;如果沒有,請說明理由?(注:區(qū)間的長度為).

 

查看答案和解析>>

同步練習(xí)冊答案