已知函數(shù)
(Ⅰ)求函數(shù)的最小值;
(Ⅱ)若,求的值.

(Ⅰ)(Ⅱ)

解析試題分析:(Ⅰ)將用同角三角函數(shù)關(guān)系式轉(zhuǎn)化為,此函數(shù)及轉(zhuǎn)化為關(guān)于的二次函數(shù),將三角函數(shù)最值問題轉(zhuǎn)化為二次函數(shù)配方法求最值問題。根據(jù)正弦函數(shù)范圍為,即可求出的最小值。(Ⅱ)當(dāng)時,可計算求得,因為,所以舍掉,將代入余弦二倍角公式,即可求得的值。
試題解析:解:(Ⅰ)因為

,
,所以當(dāng)時,函數(shù)的最小值為.……  6分
(Ⅱ)由(Ⅰ)得,
所以
于是(舍)或
.                     13分
考點:1三角函數(shù)同角三角函數(shù)關(guān)系式,二倍角公式;2正弦函數(shù)值域;3二次函數(shù)最值問題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=Asin(ωxφ)(其中A>0,ω>0,-π<φ≤π)在x處取得最大值2,其圖象與x軸的相鄰兩個交點的距離為.
(1)求f(x)的解析式;
(2)求函數(shù)g(x)=的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在△ABC中,三個內(nèi)角A、B、C的對應(yīng)邊為,.
(Ⅰ)當(dāng)
(Ⅱ)設(shè),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)平面向量,,函數(shù).
(Ⅰ)求函數(shù)的值域和函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng),且時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,.
(1)求的值;
(2)當(dāng)時,求的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知.
(Ⅰ)求的值;
(Ⅱ)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知.
(1)求的值;
(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)(其中)的圖象如圖所示,把函數(shù)的圖像向右平移個單位,再向下平移1個單位,得到函數(shù)的圖像.

(1)若直線與函數(shù)圖像在時有兩個公共點,其橫坐標(biāo)分別為,求的值;
(2)已知內(nèi)角的對邊分別為,且.若向量共線,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的最大值,并指出取到最大值時對應(yīng)的的值;
(2)若,且,計算的值.

查看答案和解析>>

同步練習(xí)冊答案