(本小題滿分12分)
設(shè)為奇函數(shù),a為常數(shù)。
(1)求的值;并證明在區(qū)間上為增函數(shù);
(2)若對于區(qū)間上的每一個的值,不等式恒成立,求實(shí)數(shù)m的取值范圍.
(1)(2)
【解析】
試題分析:.解:(1)由得,
令,得,
是奇函數(shù),定義域關(guān)于原點(diǎn)對稱,。
且當(dāng)時,定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013100500072855963074/SYS201310050008256195447597_DA.files/image011.png">,
,函數(shù)為奇函數(shù)
故
設(shè)任意,,
則
而,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013100500072855963074/SYS201310050008256195447597_DA.files/image019.png">,,,
則,
故,故,即,
即,上為增函數(shù)。
(2)由題意知時恒成立,
令
由(1)知上為增函數(shù),又在上也是增函數(shù),
故上為增函數(shù),最小值為,
故由題意可知,即實(shí)數(shù)m的取值范圍是
考點(diǎn):本試題考查了函數(shù)的奇偶性和單調(diào)性運(yùn)用。
點(diǎn)評:解決該試題的關(guān)鍵是奇偶性的判定,要注意看定義域和解析式兩個方面進(jìn)行,而對于單調(diào)性的證明,根據(jù)定義法即可。對于不等式的恒成立問題,一般用分離參數(shù)的思想求解范圍,屬于中檔題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com