【題目】如圖,在四棱柱中,四邊形ABCD為平行四邊形,且點(diǎn)在底面上的投影H恰為CD的中點(diǎn).

1)棱BC上存在一點(diǎn)N,使得AD⊥平面,試確定點(diǎn)N的位置,說(shuō)明理由;

2)求三棱錐的體積.

【答案】1)點(diǎn)N為棱BC的中點(diǎn),理由見(jiàn)解析;(22.

【解析】

1)點(diǎn)N為棱BC的中點(diǎn),由題可得△HBC為等邊三角形,所以NHBC,又可證BC,故可得BC⊥平面,又AD//BC,即證AD⊥平面;

(2)由題得到平面的距離即為A到平面的距離,過(guò)AAMCD于點(diǎn)M,證AM⊥平面,則,由條件代值計(jì)算即可.

1)當(dāng)點(diǎn)N為棱BC的中點(diǎn)時(shí),符合題目要求,下面給出證明.

分別連結(jié)NH,,BH,

在底面上的投影H恰為CD的中點(diǎn),∴⊥平面ABCD,

BC平面ABCD,∴BC,

在△HBC中,,故△HBC為等邊三角形,

又點(diǎn)N為棱BC的中點(diǎn),∴NHBC,

BC,NH=H,,NH平面,

BC⊥平面,

又由平行四邊形ABCDAD//BC,

AD⊥平面,點(diǎn)N即為所求.

2)∵平面//平面,

到平面的距離即為A到平面的距離,

過(guò)AAMCD于點(diǎn)M,

⊥平面ABCD,∴AM,

,∴AM⊥平面,

,,

,

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),拋物線的焦點(diǎn)坐標(biāo)為,點(diǎn),在該拋物線上且位于軸的兩側(cè),

(Ⅰ)證明:直線過(guò)定點(diǎn);

(Ⅱ)以,為切點(diǎn)作的切線,設(shè)兩切線的交點(diǎn)為,點(diǎn)為圓上任意一點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某“雙一流A類(lèi)大學(xué)就業(yè)部從該校2018年已就業(yè)的大學(xué)本科畢業(yè)生中隨機(jī)抽取了100人進(jìn)行問(wèn)卷調(diào)查,其中一項(xiàng)是他們的月薪收入情況,調(diào)查發(fā)現(xiàn),他們的月薪收入在人民幣1.65萬(wàn)元到2.35萬(wàn)元之間,根據(jù)統(tǒng)計(jì)數(shù)據(jù)分組,得到如下的頻率分布直方圖:

(1)為感謝同學(xué)們對(duì)這項(xiàng)調(diào)查工作的支持,該校利用分層抽樣的方法從樣本的前兩組中抽出6人,各贈(zèng)送一份禮品,并從這6人中再抽取2人,各贈(zèng)送某款智能手機(jī)1部,求獲贈(zèng)智能手機(jī)的2人月薪都不低于1.75萬(wàn)元的概率;

(2)同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表.

(i)求這100人月薪收入的樣本平均數(shù)和樣本方差;

(ii)該校在某地區(qū)就業(yè)的2018屆本科畢業(yè)生共50人,決定于2019國(guó)慶長(zhǎng)假期間舉辦一次同學(xué)聯(lián)誼會(huì),并收取一定的活動(dòng)費(fèi)用,有兩種收費(fèi)方案:

方案一:設(shè),月薪落在區(qū)間左側(cè)的每人收取400元,月薪落在區(qū)間內(nèi)的每人收到600元,月薪落在區(qū)間右側(cè)的每人收取800元.

方案二:按每人一個(gè)月薪水的3%收。挥迷撔>蜆I(yè)部統(tǒng)計(jì)的這100人月薪收入的樣本頻率進(jìn)行估算,哪一種收費(fèi)方案能收到更多的費(fèi)用?

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某玩具廠擬定生產(chǎn)兩款新毛絨玩具樣品,一款為毛絨小豬,另一款為毛絨小狗.由設(shè)計(jì)圖知,生產(chǎn)這兩款毛絨玩具均需相同材質(zhì)的填充物、長(zhǎng)毛絨、天鵝絨,且每個(gè)毛絨小豬需填充物、長(zhǎng)毛絨、天鵝絨,每個(gè)毛絨小狗需填充物、長(zhǎng)毛絨、天鵝絨.現(xiàn)有所需填充物、長(zhǎng)毛絨、天鵝絨,若每個(gè)毛絨小豬與毛絨小狗的出廠價(jià)分別為64元、36元,則生這批毛絨玩具的最大銷(xiāo)售額為_______元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直三棱柱中,,且,點(diǎn)D,E,F分別為,,BC中點(diǎn).

1)求證:平面;

2)若,求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱柱中,四邊形ABCD為平行四邊形,且點(diǎn)在底面上的投影H恰為CD的中點(diǎn).

1)棱BC上存在一點(diǎn)N,使得AD⊥平面,試確定點(diǎn)N的位置,說(shuō)明理由;

2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年初,由于疫情影響,開(kāi)學(xué)延遲,為了不影響學(xué)生的學(xué)習(xí),國(guó)務(wù)院、省市區(qū)教育行政部門(mén)倡導(dǎo)各校開(kāi)展“停學(xué)不停課、停學(xué)不停教”,某校語(yǔ)文學(xué)科安排學(xué)生學(xué)習(xí)內(nèi)容包含老師推送文本資料學(xué)習(xí)和視頻資料學(xué)習(xí)兩類(lèi),且這兩類(lèi)學(xué)習(xí)互不影響已知其積分規(guī)則如下:每閱讀一篇文本資料積1分,每日上限積5分;觀看視頻1個(gè)積2分,每日上限積6.經(jīng)過(guò)抽樣統(tǒng)計(jì)發(fā)現(xiàn),文本資料學(xué)習(xí)積分的概率分布表如表1所示,視頻資料學(xué)習(xí)積分的概率分布表如表2所示.

1)現(xiàn)隨機(jī)抽取1人了解學(xué)習(xí)情況,求其每日學(xué)習(xí)積分不低于9分的概率;

2)現(xiàn)隨機(jī)抽取3人了解學(xué)習(xí)情況,設(shè)積分不低于9分的人數(shù)為ξ,求ξ的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】海南盛產(chǎn)各種名貴樹(shù)木,如紫檀、黃花梨等.在實(shí)際測(cè)量單根原木材體積時(shí),可以檢量木材的實(shí)際長(zhǎng)度(檢尺長(zhǎng))和小頭直徑(檢尺徑),再通過(guò)國(guó)家公布的原木材積表直接查詢得到,原木材積表的部分?jǐn)?shù)據(jù)如下所示:

檢尺徑

檢尺長(zhǎng)(

2.0

2.2

2.4

2.5

2.6

材積(

8

0.0130

0.0150

0.0160

0.0170

0.0180

10

0.0190

0.0220

0.0240

0.0250

0.0260

12

0.0270

0.0300

0.0330

0.0350

0.0370

14

0.0360

0.0400

0.0450

0.0470

0.0490

16

0.0470

0.0520

0.0580

0.0600

0.0630

18

0.0590

0.0650

0.0720

0.0760

0.0790

20

0.0720

0.0800

0.0880

0.0920

0.0970

22

0.0860

0.0960

0.1060

0.1110

0.1160

24

0.1020

0.1140

0.1250

0.1310

0.1370

若小李購(gòu)買(mǎi)了兩根紫檀原木,一根檢尺長(zhǎng)為,檢尺徑為,另一根檢尺長(zhǎng)為,檢尺徑為,根據(jù)上表,可知兩根原木的材積之和為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列的公差為,前n項(xiàng)和為,且滿足____________.(從①);②成等比數(shù)列;③,這三個(gè)條件中任選兩個(gè)補(bǔ)充到題干中的橫線位置,并根據(jù)你的選擇解決問(wèn)題)

I)求;

(Ⅱ)若,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案