已知函數(shù)f(x)=
2x+3
3x
,數(shù)列{an}滿足a1=1,an+1=f(
1
an
),n∈N*

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令Tn=a1a2-a2a3+a3a4-a4a5+…+a2n-1a2n-a2na2n+1,求Tn
(3)令bn=
1
an-1an
(n≥2)
,b1=3,Sn=b1+b2+…+bn,若Sn
m-2002
2
對一切n∈N*成立,求最小正整數(shù)m.
分析:(1)根據(jù)題意列出遞推公式,再由等差數(shù)列的定義求通項(xiàng)公式an
(2)根據(jù)式子的特點(diǎn)進(jìn)行變形,然后由(1)知數(shù)列為等差數(shù)列求Tn
(3)把a(bǔ)n代入bn整理后再裂項(xiàng),然后求數(shù)列{bn}的前n和sn,再用放縮法和不等式恒成立問題,求m的值.
解答:解:(1)∵an+1=f(
1
an
)=
2+3an
3
=an+
2
3

an+1-an=
2
3

∴數(shù)列{an}是以
2
3
為公差,首項(xiàng)a1=1的等差數(shù)列
an=
2
3
n+
1
3

(2)Tn=a1a2-a2a3+a3a4-a4a5+…+a2n-1a2n-a2na2n+1
=a2(a1-a3)+a4(a3-a5)+…+a2n(a2n-1-a2n+1
=-
4
3
(a2+a4+…+a2n)

=-
4
3
×
n(
5
3
+
4n
3
+
1
3
)  
2

=-
4
9
(2n2+3n)

(3)當(dāng)n≥2時(shí),bn=
1
an-1an
=
1
(
2
3
n-
1
3
)(
2
3
n+
1
3
)
=
9
2
(
1
2n-1
-
1
2n+1
)

當(dāng)n=1時(shí),上式同樣成立
∴sn=b1+b2+…+bn=
9
2
[(1-
1
3
) +(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)]

=
9
2
(1-
1
2n+1
)

∵恒有
9
2
(1-
1
2n+1
)<
9
2
成立,
Sn
m-2002
2
,即
9
2
(1-
1
2n+1
)<
m-2002
2
對一切n∈N*成立,
9
2
m-2002
2
,解得  m≥2011,
∴m最小=2011
點(diǎn)評:本題的前兩小題考查了等差數(shù)列的定義求和問題,最后一小題有一定的難度,用到了裂項(xiàng)相消法求和,處理不等式時(shí)用到了放縮法,使得不等式恒成立.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-xx+1

(1)求出函數(shù)f(x)的對稱中心;
(2)證明:函數(shù)f(x)在(-1,+∞)上為減函數(shù);
(3)是否存在負(fù)數(shù)x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-x-1,x≤0
x
,x>0
,則f[f(-2)]=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函數(shù)f(x)的值域和最小正周期;
(2)當(dāng)x∈[0,2π]時(shí),求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
ax+1
(a∈R)
的圖象過點(diǎn)(4,-1)
(1)求a的值;
(2)求證:f(x)在其定義域上有且只有一個(gè)零點(diǎn);
(3)若f(x)+mx>1對一切的正實(shí)數(shù)x均成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],則當(dāng)x=
3
3
時(shí),函數(shù)f(x)有最大值,最大值為
2
3
2
3

查看答案和解析>>

同步練習(xí)冊答案