【題目】已知圓M:,直線l:()過定點(diǎn)N,點(diǎn)P是圓M上的任意一點(diǎn),線段的垂直平分線和相交于點(diǎn)Q,當(dāng)點(diǎn)P在圓M上運(yùn)動時(shí),點(diǎn)Q的軌跡為曲線C.
(1)求曲線C的方程;
(2)直線l交C于A,B兩點(diǎn),D,B關(guān)于x軸對稱,直線與x軸交于點(diǎn)E,且點(diǎn)D為線段的中點(diǎn),求直線l的方程.
【答案】(1);(2).
【解析】
(1)由題意得,根據(jù)橢圓定義知動點(diǎn)Q的軌跡是橢圓,求出后可得橢圓方程;
(2)聯(lián)立直線與橢圓,根據(jù)韋達(dá)定理以及中點(diǎn)公式可解得,從而可得直線l的方程.
(1)直線l:()過定點(diǎn)
由條件可得,又
所以 ,且,
根據(jù)橢圓定義得動點(diǎn)Q的軌跡是以為焦點(diǎn)的橢圓
且,,,
所以,
故C的方程為:.
(2)直線l:,代入,消去并整理得,
設(shè)、,
則,①.②
因?yàn)?/span>D為的中點(diǎn),且,
因?yàn)?/span>,即,
所以,所以③
①③聯(lián)立得,,代入②得
,
解得,所以,
所以直線l的方程為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,如下圖就是在平面直角坐標(biāo)系的“心形曲線”,又名RC心形線.如果以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,其RC心形線的極坐標(biāo)方程為.
(1)求RC心形線的直角坐標(biāo)方程;
(2)已知與直線(為參數(shù)),若直線與RC心形線交于兩點(diǎn),,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一塊邊長為4的正方形鋁板(如圖),請?jiān)O(shè)計(jì)一種裁剪方法,用虛線標(biāo)示在答題卡本題圖中,通過該方案裁剪,可焊接做成一個(gè)密封的正四棱柱(底面是正方形且側(cè)棱垂于底面的四棱柱),且該四棱柱的全面積等于正方形鋁板的面積(要求裁剪的塊數(shù)盡可能少,不計(jì)焊接縫的面積),則該四棱柱外接球的體積為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),若在上有零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)函數(shù),討論的單調(diào)性;
(2)函數(shù)()的圖象在點(diǎn)處的切線為,證明:有且只有兩個(gè)點(diǎn)使得直線與函數(shù)的圖象也相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】受疫情影響,某電器廠生產(chǎn)的空調(diào)滯銷,經(jīng)研究決定,在已有線下門店銷售的基礎(chǔ)上,成立線上營銷團(tuán)隊(duì),大力發(fā)展“網(wǎng)紅”經(jīng)濟(jì),當(dāng)線下銷售人數(shù)為(人)時(shí),每天線下銷售空調(diào)可達(dá)(百臺),當(dāng)線上銷售人數(shù)為(人)()時(shí),每天線上銷量達(dá)到(百臺).
(1)解不等式:,并解釋其實(shí)際意義;
(2)若該工廠大有銷售人員()人,按市場需求,安排人員進(jìn)行線上或線下銷售,問該工廠每天銷售空調(diào)總臺數(shù)的最大值是多少百臺?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為:,(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
(1)求曲線和直線l的直角坐標(biāo)方程;
(2)若點(diǎn)在曲線上,且點(diǎn)到直線l的距離最小,求點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com