已知函數(shù),其中m,a均為實數(shù).

(1)求的極值;

(2)設(shè),若對任意的,恒成立,求的最小值;

(3)設(shè),若對任意給定的,在區(qū)間上總存在,使得成立,求的取值范圍.

 

(1)極大值為1,無極小值;(2)3?;(3)

【解析】

試題分析:(1)求的極值,就是先求出,解方程,此方程的解把函數(shù)的定義域分成若干個區(qū)間,我們再確定在每個區(qū)間里的符號,從而得出極大值或極小值;(2)此總是首先是對不等式恒成立的轉(zhuǎn)化,由(1)可確定上是增函數(shù),同樣的方法(導數(shù)法)可確定函數(shù)上也是增函數(shù),不妨設(shè),這樣題設(shè)絕對值不等式可變?yōu)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2014111719113088409574/SYS201411171911450252872963_DA/SYS201411171911450252872963_DA.015.png">

,整理為,由此函數(shù)在區(qū)間上為減函數(shù),則在(3,4)上恒成立,要求的取值范圍.采取分離參數(shù)法得恒成立,于是問題轉(zhuǎn)化為求上的最大值;(3)由于的任意性,我們可先求出上的值域,題設(shè)“在區(qū)間上總存在,使得

成立”,轉(zhuǎn)化為函數(shù)在區(qū)間上不是單調(diào)函數(shù),極值點為),其次,極小值,最后還要證明在上,存在,使,由此可求出的范圍.

試題解析:(1),令,得x=1. 1分

列表如下:

x

(?∞,1)

1

(1,∞)

0

?

g(x)

極大值

 

 

 

 

 

∵g(1)=1,∴y=的極大值為1,無極小值. 3分

(2)當時,

恒成立,∴上為增函數(shù). 4分

設(shè),∵>0在恒成立,

上為增函數(shù). 5分

設(shè),則等價于,

設(shè),則u(x)在為減函數(shù).

在(3,4)上恒成立. 6分

恒成立.

設(shè),∵=,x?[3,4],

,∴<0,為減函數(shù).

在[3,4]上的最大值為v(3)=3?. 8分

∴a≥3?,∴的最小值為3?. 9分

(3)由(1)知上的值域為. 10分

,,

時,為減函數(shù),不合題意. 11分

時,,由題意知不單調(diào),

所以,即.① 12分

此時上遞減,在上遞增,

,即,解得.②

由①②,得. 13分

,∴成立. 14分

下證存在,使得≥1.

,先證,即證.③

設(shè),則時恒成立.

時為增函數(shù).∴,∴③成立.

再證≥1.

,∴時,命題成立.

綜上所述,的取值范圍為. 16分

考點:導數(shù)的應(yīng)用,求單調(diào)區(qū)間,極值,求函數(shù)的值域,不等式恒成立等函數(shù)的綜合應(yīng)用.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2013-2014學年江西省上饒市高三第二次模擬考試理科數(shù)學試卷(解析版) 題型:選擇題

設(shè)集合,則下列關(guān)系中不正確的是( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年江蘇省高三百校聯(lián)合調(diào)研測試(一)數(shù)學試卷(解析版) 題型:填空題

一個社會調(diào)查機構(gòu)就某地居民的月收入調(diào)查了10 000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(如下圖).為了分析居民的收入與年齡、學歷、職業(yè)等方面的關(guān)系,要從這10 000人中再用分層抽樣方法抽出100人作進一步調(diào)查,則在[2500,3000)(元)月收入段應(yīng)抽出 人.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年江蘇省連云港市高三3月第二次調(diào)研考試理科數(shù)學試卷(解析版) 題型:填空題

如圖,在△ABC中,BO為邊AC上的中線,,設(shè),若,則的值為 .

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年江蘇省連云港市高三3月第二次調(diào)研考試理科數(shù)學試卷(解析版) 題型:填空題

執(zhí)行如圖所示的算法流程圖,則最后輸出的等于 .

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年江蘇省連云港市高三3月第二次調(diào)研考試文科數(shù)學試卷(解析版) 題型:解答題

設(shè)函數(shù)

(1)求的最小正周期和值域;

(2)在銳角△中,角的對邊分別為,若,,求

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年江蘇省連云港市高三3月第二次調(diào)研考試文科數(shù)學試卷(解析版) 題型:填空題

從甲,乙,丙,丁4個人中隨機選取兩人,則甲乙兩人中有且只有一個被選取的概率為 .

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年江蘇省蘇錫常鎮(zhèn)四市高三教學情況調(diào)研二數(shù)學試卷(解析版) 題型:填空題

”是“函數(shù)的圖象關(guān)于y軸對稱”的

條件.(在“充分必要”、“充分不必要”、“必要不充分”、

“既不充分也不必要”中選一個合適的填空)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年江蘇省蘇、錫、常、鎮(zhèn)四市高三教學情況調(diào)查(一)文科數(shù)學試卷(解析版) 題型:填空題

設(shè)等差數(shù)列的前項和為,若,,則正整數(shù)= .

 

查看答案和解析>>

同步練習冊答案