(本小題滿分12分)

已知函數(shù)

(I)當(dāng)時,求函數(shù)的圖象在點(diǎn)A(0,)處的切線方程;

(II)討論函數(shù)的單調(diào)性;

(Ⅲ)是否存在實數(shù),使當(dāng)時恒成立?若存在,求出實數(shù);若不存在,請說明理由.

 

【答案】

解(I).   

(II),為增函數(shù),為減函數(shù)。

                                                                                                    (Ⅲ)符合條件的實數(shù)不存在.  

【解析】本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。

(1)運(yùn)用了導(dǎo)數(shù)的幾何意義求解曲線的切線方程問題。

(2)利用導(dǎo)數(shù)的運(yùn)算,和導(dǎo)數(shù)與不等式的關(guān)系,求解得到函數(shù)的單調(diào)區(qū)間。

(3)對于不等式的恒成立問題可以轉(zhuǎn)化為求解新函數(shù)的最值問題,來得到參數(shù)的取值范圍的求解的這樣的數(shù)學(xué)思想的運(yùn)用。

解(I) 時,,

于是,,

所以函數(shù)的圖象在點(diǎn)處的切線方程為

.              ………………………… ……………… 2分

(II)

=,

,∴ 只需討論的符號.        ……………… 4分

。┊(dāng)>2時,>0,這時>0,所以函數(shù)在(-∞,+∞)上為增函數(shù).

ⅱ)當(dāng)= 2時,≥0,函數(shù)在(-∞,+∞)上為增函數(shù).

……………… 6分

ⅲ)當(dāng)0<<2時,令= 0,解得

當(dāng)變化時,的變化情況如下表:

 

+

0

0

+

極大值

極小值

為增函數(shù),

減函數(shù)……………… 8分

                                                                                                    (Ⅲ)當(dāng)∈(1,2)時,∈(0,1).由(2)知上是減函數(shù),在上是增函數(shù),故當(dāng)∈(0,1)時,,所以當(dāng)∈(0,1)時恒成立,等價于恒成立.……10分

當(dāng)∈(1,2)時,,設(shè),則,表明g(t) 在(0,1)上單調(diào)遞減,于是可得,即∈(1,2)時恒成立,因此,符合條件的實數(shù)不存在.    ……………… 12分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動點(diǎn),|
ON
|=6,
ON
=
5
OM
.過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個項目參與建設(shè).求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習(xí)冊答案