已知函數在處取得極值.
(Ⅰ)求的值;
(Ⅱ)證明:當時,.
科目:高中數學 來源: 題型:解答題
已知函數,在上的減函數.
(Ⅰ)求曲線在點(1,f(1))處的切線方程;
(Ⅱ)若在上恒成立,求的取值范圍;
(Ⅲ)關于的方程()有兩個根(無理數e=2.71828),求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=alnx+(a≠0)在(0,)內有極值.
(I)求實數a的取值范圍;
(II)若x1∈(0,),x2∈(2,+∞)且a∈[,2]時,求證:f(x1)﹣f(x2)≥ln2+.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數,其中,為參數,且.
(1)當時,判斷函數是否有極值;
(2)要使函數的極小值大于零,求參數的取值范圍;
(3)若對(2)中所求的取值范圍內的任意參數,函數在區(qū)間內都是增函數,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知,其中為常數.
(Ⅰ)當函數的圖象在點處的切線的斜率為1時,求函數在上的最小值;
(Ⅱ)若函數在上既有極大值又有極小值,求實數的取值范圍;
(Ⅲ)在(Ⅰ)的條件下,過點作函數圖象的切線,試問這樣的切線有幾條?并求這些切線的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com