如圖,已知直線l:x+2y-4=0與兩坐標(biāo)軸分別交于A、B兩點,矩形ODCE的一個頂點C在直線l上,那么矩形面積的最大值為____________,此時C點坐標(biāo)為____________.

思路解析:可設(shè)出C點坐標(biāo),寫出矩形面積的表達式,根據(jù)表達式求出矩形面積最大值.

設(shè)C(x,y),則x>0,y>0且x+2y-4=0,即x=4-2y,矩形面積為S=xy=(4-2y)y=2(2-y)y≤2×[2=2,當(dāng)且僅當(dāng)2-y=y,即y=1時取等號,此時x=4-2=2,即矩形面積的最大值為2,對應(yīng)點C坐標(biāo)為(2,1).

答案:2  (2,1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直線l與拋物線x2=4y相切于點P(2,1),且與x軸交于點A,O為坐標(biāo)原點,定點B的坐標(biāo)為(2,0).
(1)若動點M滿足
AB
BM
+
2
|
AM
|
=0,求動點M的軌跡Q;
(2) F1,F(xiàn)2是軌跡Q的左、右焦點,過F1作直線l(不與x軸重合),l與軌跡Q相交于C,D,并與圓x2+y2=3相交于E,F(xiàn).當(dāng)
F2E
F2F
,且λ∈[
2
3
,1]時,求△F2CD的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直線l與拋物線y=
1
4
x2
相切于點P(2,1),且與x軸交于點A,O為坐標(biāo)原點,定點B的坐標(biāo)為(2,0).
(1)若動點M滿足
AB
BM
+
2
|
AM
|=0
,求動點M的軌跡C的方程;
(2)若過點B的直線l'(斜率不等于零)與(1)中的軌跡C交于不同
的兩點E、F(E在B、F之間),且
BE
BF
,試求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)a>0,如圖,已知直線l:y=ax及曲線C:y=x2,C上的點Q1的橫坐標(biāo)為a1(0<a1<a).從C上的點Qn(n≥1)作直線平行于x軸,交直線l于點Pn+1,再從點Pn+1作直線平行于y軸,交曲線C于點Qn+1.Qn(n=1,2,3,…)的橫坐標(biāo)構(gòu)成數(shù)列{an}.
(Ⅰ)試求an+1與an的關(guān)系,并求{an}的通項公式;
(Ⅱ)當(dāng)a=1,a1
1
2
時,證明
n
k=1
(ak-ak+1)ak+2
1
32
;
(Ⅲ)當(dāng)a=1時,證明
n
k-1
(ak-ak+1)ak+2
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣州三模)如圖,已知直線l:y=4x及曲線C:y=x2,C上的點Q1的橫坐標(biāo)為a1(0<a1<4).從曲線C上的點Qn(n≥1)作直線平行于x軸,交直線l于點Pn+1,再從點Pn+1作直線平行于y軸,交曲線C于點Qn+1.Qn(n=1,2,3,…)的橫坐標(biāo)構(gòu)成數(shù)列{an}.
(1)試求an+1與an的關(guān)系; 
(2)若曲線C的平行于直線l的切線的切點恰好介于點Q1,Q2之間(不與Q1,Q2重合),求a3的取值范圍;
(3)若a1=3,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•樂山一模)如圖,已知直線l過點A(0,4),交函數(shù)y=2x的圖象于點C,交x軸于點B,若AC:CB=2:3,則點B的橫坐標(biāo)為
3.16
3.16
.(結(jié)果精確到0.01,參考數(shù)據(jù)lg2=0.3010,lg3=0.4771)

查看答案和解析>>

同步練習(xí)冊答案