已知函數(shù)f(x)=x2+2x+alnx,a∈R.
(Ⅰ)當a=-4時,求f(x)的極值;
(Ⅱ)若f(x)在區(qū)間(0,1)上無極值點,求a的取值范圍;
(Ⅲ)若對任意t≥1,有f(2t-1)≥2f(t)-3,求a的取值范圍.
分析:(Ⅰ)利用導數(shù)的運算法則可得f′(x),令f′(x)=0,再驗證是否滿足取得極值的條件即可;
(Ⅱ)由于f(x)在區(qū)間(0,1)上無極值點,則f′(x)≥0或f′(x)≤0對x∈(0,1)恒成立,即a≥-2x(x+1)或a≤-2x(x+1)在x∈(0,1)上恒成立,故只需a≥[-2x(x+1)]max或a≤[-2x(x+1)]min;
(Ⅲ)利用函數(shù)的解析式得到f(2t-1)≥2f(t)-3的等價命題,再分離參數(shù)得到當t>1時,a≤
2(t-1)2
ln
t2
2t-1
恒成立,進而得到a的取值范圍.
解答:解:f′(x)=2x+2+
a
x
=
2x2+2x+a
x
(x>0).
(Ⅰ)當a=-4時,f′(x)=2x+2-
4
x
=
2(x+2)(x-1)
x

令f′(x)=0,解得x=-2或x=1.
當 x∈(0,1)時,f′(x)<0,f(x)是減函數(shù),
當x∈(1,+∞)時,f′(x)>0,f(x)是增函數(shù).
∴x=1是 f (x) 是極小值點,故f(x)的極小值為3;
(Ⅱ)由于f(x)在區(qū)間(0,1)上無極值點,
f′(x)=2x+2+
a
x
≥0
對x∈(0,1)恒成立或f′(x)=2x+2+
a
x
≤0
對x∈(0,1)恒成立,
即a≥-2x(x+1)或a≤-2x(x+1)在x∈(0,1)上恒成立,
由于y=-2x(x+1)在(0,1)上減函數(shù),故ymin=-4,ymax=0
所以a≥0或a≤-4
(Ⅲ)∵f(x)=x2+2x+alnx,對任意t≥1,有f(2t-1)≥2f(t)-3,
∴2t2-4t+2≥2alnt-aln(2t-1)=aln
t2
2t-1

當t≥1時,t2≥2t-1,∴ln
t2
2t-1
≥0
,即t>1時,a≤
2(t-1)2
ln
t2
2t-1
恒成立.
又由ln(1+x)≤x在x>-1上恒成立,
ln
t2
2t-1
=ln[1+
(t-1)2
2t-1
]≤
(t-1)2
2t-1
<(t-1)2
在t>1上恒成立,當t=1時取等號,
∴當t≥1時,ln
t2
2t-1
<(t-1)2,故a≤2,
則a的取值范圍為(-∞,2].
點評:本題主要考查導數(shù)的綜合應用;同時考查一元二次不等式恒成立問題的解決策略.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案