已知雙曲線,若過右焦點F且傾斜角為30°的直線與雙曲線的右支有兩個交點,則此雙曲線離心率的取值范圍是__________.

試題分析:易知:直線的斜率為,要滿足直線方程與雙曲線右支有兩個交點,需,所以雙曲線離心率的取值范圍是
點評:要使此直線與雙曲線的右支有兩個交點,需滿足此直線的斜率比過一三象限的漸近線的斜率大,分析出這一條是解題的關(guān)鍵。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過拋物線y2=4x的焦點作直線交拋物線于A(x1,y1),B(x2,y2)兩點,若x1+x2=6,那么|AB|等于   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線經(jīng)過的定點的坐標(biāo)是      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線與曲線相切于點,則的值為 (    )
A.5B. 6 C. 4D. 9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在軸上,一條經(jīng)過點且方向向量為的直線交橢圓兩點,交軸于點,且

(1)求直線的方程;
(2)求橢圓長軸長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分13分)已知橢圓()過點,其左、右焦點分別為,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)若是直線上的兩個動點,且,則以為直徑的圓是否過定點?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題14分)
已知橢圓)過點(0,2),離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過定點(2,0)的直線與橢圓相交于兩點,且為銳角(其中為坐標(biāo)原點),求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,過拋物線y2="2px" (p0)的焦點F的直線交拋物線于點A、B,交其準(zhǔn)線于點C,若|BC|=2|BF|,且|AF|=3.則此拋物線的方程為(    )

A.y2=—x
B.y2=9x
C.y2=x
D. y2=3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過拋物線 y2 =" 4x" 的焦點作直線交拋物線于A(x1, y1)B(x2, y2)兩點,如果=6,那么           

查看答案和解析>>

同步練習(xí)冊答案