【題目】一個單位有職工500人,其中不到35歲的有125人,35歲至50歲的有280人,50歲以上的有95人.為了了解這個單位職工與身體狀態(tài)有關(guān)的某項指標,要從中抽取100名職工作為樣本,應該怎樣抽取?

【答案】見解析

【解析】

根據(jù)所給的數(shù)據(jù)可以判斷出采用分層抽樣來抽取樣本,按照分層抽樣的步驟進行即可.

解:用分層抽樣來抽取樣本,步驟:

(1)分層:按年齡將500名職工分成三層:不到35歲的職工;35歲至50歲的職工;50歲以上的職工.

(2)確定每層抽取個體的個數(shù).抽樣比為,則在不到35歲的職工中抽取(人);

35歲至50歲的職工中抽取(人);

50歲以上的職工中抽取(人).

(3)在各層分別按抽簽法或隨機數(shù)表法抽取樣本.

(4)綜合每層抽樣,組成樣本.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,圓的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.

(1)求圓的普通方程和直線的直角坐標方程;

(2)若直線與圓交于兩點,是圓上不同于兩點的動點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電視臺在互聯(lián)網(wǎng)上征集電視節(jié)目的現(xiàn)場參與觀眾,報名的共有12000人,分別來自4個地區(qū),其中甲地區(qū)2400人,乙地區(qū)4605人,丙地區(qū)3795人,丁地區(qū)1200人,主辦方計劃從中抽取60人參加現(xiàn)場節(jié)目,請設計一套抽樣方案.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)上是增函數(shù),則的取值范圍是( 。

A. B. C. D.

【答案】C

【解析】

若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),則x2﹣ax+3a>0且f(2)0,根據(jù)二次函數(shù)的單調(diào)性,我們可得到關(guān)于a的不等式,解不等式即可得到a的取值范圍.

若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),

則當x∈[2,+∞)時,

x2﹣ax+3a>0且函數(shù)f(x)=x2﹣ax+3a為增函數(shù)

,f(2)=4+a>0

解得﹣4<a≤4

故選:C.

【點睛】

本題考查的知識點是復合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),對數(shù)函數(shù)的單調(diào)區(qū)間,其中根據(jù)復合函數(shù)的單調(diào)性,構(gòu)造關(guān)于a的不等式,是解答本題的關(guān)鍵.

型】單選題
結(jié)束】
10

【題目】圓錐的高和底面半徑之比,且圓錐的體積,則圓錐的表面積為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,,以的中線為折痕,將沿折起,如圖所示,構(gòu)成二面角,在面內(nèi)作,且

(1)求證:平面

(2)如果二面角的大小為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,正三棱柱的所有棱長都為,中點.

(1)求證:⊥平面;

(2)求銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知矩形中, 分別是、上的點, ,,的中點現(xiàn)沿著翻折,使平面平面.

(Ⅰ)的中點,求證:平面.

(Ⅱ)求異面直線所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列中,,.

1)求證:存在的一次函數(shù),使得成公比為2的等比數(shù)列;

2)求的通項公式;

3)令,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】農(nóng)科院的專家為了了解新培育的甲、乙兩種麥苗的長勢情況,從種植有甲、乙兩種麥苗的兩塊試驗田中各抽取6株麥苗測量株高,得到的數(shù)據(jù)如下(單位:cm):

甲:9,10,11,1210,20

С8,14,13,10,12,21.

1)選擇合適的統(tǒng)計圖表表示上述數(shù)據(jù);

2)分別計算兩組數(shù)據(jù)的平均數(shù)與方差,并由此判斷甲、乙兩種麥苗的長勢情況.

查看答案和解析>>

同步練習冊答案