【題目】橢圓的上、下焦點(diǎn)分別為,,右頂點(diǎn)為B,且滿(mǎn)足

求橢圓的離心率e

設(shè)P為橢圓上異于頂點(diǎn)的點(diǎn),以線段PB為直徑的圓經(jīng)過(guò)點(diǎn),問(wèn)是否存在過(guò)的直線與該圓相切?若存在,求出其斜率;若不存在,說(shuō)明理由.

【答案】(Ⅰ);(Ⅱ)存在滿(mǎn)足條件的直線,斜率為.

【解析】

根據(jù)可得,即可求出橢圓的離心率,

由已知得,故橢圓方程為,設(shè),求出點(diǎn)P的坐標(biāo),再求出線段PB為直徑的圓的圓心坐標(biāo),根據(jù)直線和圓的位置關(guān)系可得.

解:,右頂點(diǎn)為B,

為等腰三角形,

,

橢圓的離心率

由已知得,

故橢圓方程為,設(shè),,

,

,

又因?yàn)辄c(diǎn)P在橢圓上,故,

由以上兩式可得,

點(diǎn)P不在橢圓的頂點(diǎn),

,

設(shè)圓的圓心為,則,

則圓的半徑,

假設(shè)存在過(guò)的直線滿(mǎn)足題設(shè)條件,并設(shè)該直線的方程為,

由相切可知,

即得,解得

故存在滿(mǎn)足條件的直線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程為,直線,直線 .以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系.

(1)求直線,的直角坐標(biāo)方程以及曲線的參數(shù)方程;

(2)已知直線與曲線交于兩點(diǎn),直線與曲線交于兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若存在常數(shù),使得對(duì)定義域內(nèi)的任意,都有成立,則稱(chēng)函數(shù)在其定義域 上是“利普希茲條件函數(shù)”.

(1)若函數(shù)是“利普希茲條件函數(shù)”,求常數(shù)的最小值;

(2)判斷函數(shù)是否是“利普希茲條件函數(shù)”,若是,請(qǐng)證明,若不是,請(qǐng)說(shuō)明理由;

(3)若是周期為2的“利普希茲條件函數(shù)”,證明:對(duì)任意的實(shí)數(shù),都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列有關(guān)平面向量分解定理的四個(gè)命題:

1)一個(gè)平面內(nèi)有且只有一對(duì)不平行的向量可作為表示該平面所有向量的基;

2)一個(gè)平面內(nèi)有無(wú)數(shù)多對(duì)不平行向量可作為表示該平面內(nèi)所有向量的基;

3)平面向量的基向量可能互相垂直;

4)一個(gè)平面內(nèi)任一非零向量都可唯一地表示成該平面內(nèi)三個(gè)互不平行向量的線性組合.

其中正確命題的個(gè)數(shù)是(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著我國(guó)經(jīng)濟(jì)的飛速發(fā)展,人民生活水平得到很大提高,汽車(chē)已經(jīng)進(jìn)入千千萬(wàn)萬(wàn)的家庭.大部分的車(chē)主在購(gòu)買(mǎi)汽車(chē)時(shí),會(huì)在轎車(chē)或者中作出選擇,為了研究某地區(qū)哪種車(chē)型更受歡迎以及汽車(chē)一年內(nèi)的行駛里程,某汽車(chē)銷(xiāo)售經(jīng)理作出如下統(tǒng)計(jì):

購(gòu)買(mǎi)了轎車(chē)(輛)

購(gòu)買(mǎi)了(輛)

歲以下車(chē)主

歲以下車(chē)主

(1)根據(jù)表,是否有的把握認(rèn)為年齡與購(gòu)買(mǎi)的汽車(chē)車(chē)型有關(guān)?

(2)圖給出的是名車(chē)主上一年汽車(chē)的行駛里程,求這名車(chē)主上一年汽車(chē)的平均行駛里程(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(3)用分層抽樣的方法從歲以上車(chē)主中抽取人,再?gòu)倪@人中隨機(jī)抽取人贈(zèng)送免費(fèi)保養(yǎng)券,求這人中至少有輛轎車(chē)的概率。

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定點(diǎn),動(dòng)點(diǎn)P是圓M上的任意一點(diǎn),線段NP的垂直平分線和半徑MP相交于點(diǎn)Q

的值,并求動(dòng)點(diǎn)Q的軌跡C的方程;

若圓的切線l與曲線C相交于A,B兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)P在圓柱的底面圓上,AB為圓的直徑,圓柱的表面積為20π,

(1)求異面直線AP所成角的大小(結(jié)果用反三角函數(shù)值表示);

(2)求點(diǎn)A到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),等腰梯形,,,分別是的兩個(gè)三等分點(diǎn),若把等腰梯形沿虛線、折起,使得點(diǎn)和點(diǎn)重合,記為點(diǎn), 如圖(2).

1)求證:平面平面;

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)P是橢圓上一點(diǎn),MN分別是兩圓(x+4)2y2=1(x-4)2y2=1上的點(diǎn),則|PM|+|PN|的最小值、最大值分別為 ( )

A. 9,12 B. 8,11 C. 10,12 D. 8,12

查看答案和解析>>

同步練習(xí)冊(cè)答案