【題目】四棱錐,底面是邊長為的菱形,側(cè)面底面,, , 中點(diǎn),點(diǎn)在側(cè)棱.

求證: ;

中點(diǎn),求二面角的余弦值;

是否存在,使平面?若存在,求出的值;若不存在,說明理由.

【答案】Ⅰ)見解析;..

【解析】試題分析:)證明AD平面POB,即可證明ADPB;()證明PO底面ABCD,建立空間直角坐標(biāo)系,求出平面DEQ的法向量,平面DQC的法向量,利用向量的夾角公式,即可求得結(jié)論;()求出平面DEQ法向量利用PA平面DEQ,即,從而可得結(jié)論.

解析:

Ⅰ)取中點(diǎn),連接.

因?yàn)?/span>,所以.

因?yàn)榱庑?/span>, ,所以.

所以.

因?yàn)?/span>,平面,所以平面.

所以.

Ⅱ)由(Ⅰ)可知, ,

因?yàn)閭?cè)面底面,且平面底面,所以底面.

為坐標(biāo)原點(diǎn),如圖建立空間直角坐標(biāo)系.

,因?yàn)?/span>中點(diǎn),所以.

所以,所以平面的法向量為.

因?yàn)?/span>,設(shè)平面的法向量為,

,.

,,.

所以.

由圖可知,二面角為銳角,所以余弦值為.

Ⅲ)設(shè)

Ⅱ)可知.

設(shè),,

又因?yàn)?/span>,所以,.

所以在平面, ,

所以平面的法向量為,

又因?yàn)?/span>平面,所以,

,解得.

所以當(dāng)時(shí), 平面.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將一鐵塊高溫融化后制成一張厚度忽略不計(jì)、面積為100dm2的矩形薄鐵皮(如圖),并沿虛線l1,l2裁剪成AB,C三個(gè)矩形(B,C全等),用來制成一個(gè)柱體.現(xiàn)有兩種方案:

方案①:以為母線,將A作為圓柱的側(cè)面展開圖,并從B,C中各裁剪出一個(gè)圓形作為圓柱的兩個(gè)底面;

方案②:以為側(cè)棱,將A作為正四棱柱的側(cè)面展開圖,并從BC中各裁剪出一個(gè)正方形(各邊分別與垂直)作為正四棱柱的兩個(gè)底面.

1設(shè)BC都是正方形,且其內(nèi)切圓恰為按方案①制成的圓柱的底面,求底面半徑;

2設(shè)的長為dm,則當(dāng)為多少時(shí),能使按方案②制成的正四棱柱的體積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左,右頂點(diǎn)分別為右焦點(diǎn)為,直線是橢圓在點(diǎn)處的切線.設(shè)點(diǎn)是橢圓上異于的動點(diǎn),直線與直線的交點(diǎn)為,且當(dāng)時(shí), 是等腰三角形.

Ⅰ)求橢圓的離心率;

Ⅱ)設(shè)橢圓的長軸長等于,當(dāng)點(diǎn)運(yùn)動時(shí),試判斷以為直徑的圓與直線的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司欲生產(chǎn)一款迎春工藝品回饋消費(fèi)者,工藝品的平面設(shè)計(jì)如圖所示,該工藝品由直角和以為直徑的半圓拼接而成,點(diǎn)為半圈上一點(diǎn)(異于),點(diǎn)在線段上,且滿足.已知,,設(shè).

1)為了使工藝禮品達(dá)到最佳觀賞效果,需滿足,且達(dá)到最大.當(dāng)為何值時(shí),工藝禮品達(dá)到最佳觀賞效果;

2)為了工藝禮品達(dá)到最佳穩(wěn)定性便于收藏,需滿足,且達(dá)到最大.當(dāng)為何值時(shí),取得最大值,并求該最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一條動直線3(m+1)x+(m-1)y-6m-2=0

1)求證:直線恒過定點(diǎn),并求出定點(diǎn)P的坐標(biāo);

2)若直線與x、y軸的正半軸分別交于AB兩點(diǎn),O為坐標(biāo)原點(diǎn),是否存在直線滿足下列條件:①AOB的周長為12;②△AOB的面積為6,若存在,求出方程;若不存在,請說明理由.

3)若直線與x、y軸的正半軸分別交于A,B兩點(diǎn),當(dāng)取最小值時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)

已知函數(shù)為常數(shù))的圖像與軸交于點(diǎn),曲線在點(diǎn)處的切線斜率為.

(1)的值及函數(shù)的極值;

(2)證明:當(dāng)時(shí),

(3)證明:對任意給定的正數(shù),總存在,使得當(dāng)時(shí),恒有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是函數(shù)的部分圖象,M,N是它與x軸的兩個(gè)不同交點(diǎn),DM,N之間的最高點(diǎn)且橫坐標(biāo)為,點(diǎn)是線段DM的中點(diǎn).

1)求函數(shù)的解析式及上的單調(diào)增區(qū)間;

2)若時(shí),函數(shù)的最小值為,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)過長期觀察得到:在交通繁忙的時(shí)段內(nèi),某公路汽車的車流量千輛/小時(shí)與汽車的平均速度千米/小時(shí)之間的函數(shù)關(guān)系為

1在該時(shí)段內(nèi),當(dāng)汽車的平均速度為多少時(shí),車流量最大,最大車流量為多少?精確到01千輛/小時(shí)

2若要求在該時(shí)段內(nèi)車流量超過10千輛/小時(shí),則汽車的平均速度應(yīng)在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)遞減區(qū)間;

(Ⅱ)若時(shí),關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍;

(Ⅲ)若數(shù)列滿足, ,記的前項(xiàng)和為,求證: .

【答案】I;(II;(III證明見解析.

【解析】試題分析:(Ⅰ)求出,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間, 求得的范圍,可得函數(shù)的減區(qū)間;(Ⅱ)當(dāng)時(shí),因?yàn)?/span>,所以顯然不成立,先證明因此時(shí), 上恒成立,再證明當(dāng)時(shí)不滿足題意,從而可得結(jié)果;(III)先求出等差數(shù)列的前項(xiàng)和為,結(jié)合(II)可得,各式相加即可得結(jié)論.

試題解析:)由,得.所以

,解得(舍去),所以函數(shù)的單調(diào)遞減區(qū)間為 .

)由得,

當(dāng)時(shí),因?yàn)?/span>,所以顯然不成立,因此.

,則,令,得.

當(dāng)時(shí), , ,,所以,即有.

因此時(shí), 上恒成立.

當(dāng)時(shí), , 上為減函數(shù),在上為增函數(shù),

,不滿足題意.

綜上,不等式上恒成立時(shí),實(shí)數(shù)的取值范圍是.

III)證明:由知數(shù)列的等差數(shù)列,所以

所以

由()得, 上恒成立.

所以. 將以上各式左右兩邊分別相加,得

.因?yàn)?/span>

所以

所以.

型】解答
結(jié)束】
22

【題目】已知直線, (為參數(shù), 為傾斜角).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的直角坐標(biāo)方程為.

(Ⅰ)將曲線的直角坐標(biāo)方程化為極坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn)的直角坐標(biāo)為,直線與曲線的交點(diǎn)為,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案