已知二次函數(shù)y=f(x)的圖像經(jīng)過(guò)坐標(biāo)原點(diǎn),其導(dǎo)函數(shù)為f??(x)=6x-2,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖像上.(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;(Ⅱ)設(shè)bn=,Tn是數(shù)列{bn}的前n項(xiàng)和,求使得Tn<對(duì)所有n∈N*都成立的最小正整數(shù)m;

(Ⅰ) an=6n-5(n∈N*)   (Ⅱ) 10


解析:

(Ⅰ)設(shè)這二次函數(shù)f(x)=ax2+bx (a≠0) ,則 f`(x)=2ax+b,由于f`(x)=6x-2,

         得a=3 ,b=-2,所以f(x)=3x2-2x.,又因?yàn)辄c(diǎn)(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖像上,所以Sn=3n2-2n,當(dāng)n≥2時(shí),an=Sn-Sn-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5,

當(dāng)n=1時(shí),a1=S1=3×12-2=6×1-5,所以,an=6n-5(n∈N*).

(Ⅱ)由(Ⅰ)得知bn===(-),

故Tn=,\s\up5(ni=1bi=[(1-)+(–)+…+(-)]=(1–),

因此,要使(1-)<(n∈N*)成立的m,必須且僅須滿(mǎn)足≤,即m≥10,所以滿(mǎn)足要求的最小正整數(shù)m為10.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:101網(wǎng)校同步練習(xí) 高三數(shù)學(xué) 蘇教版(新課標(biāo)·2004年初審) 蘇教版 題型:044

已知二次函數(shù)y=f(x)經(jīng)過(guò)點(diǎn)(0,10),導(dǎo)函數(shù)=2x-5,當(dāng)x∈(n,n+1)(n∈N*)時(shí),f(x)是整數(shù)的個(gè)數(shù),記為an求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:銀川一中2007屆高三年級(jí)第四次月考測(cè)試數(shù)學(xué)(理)試題 題型:044

已知二次函數(shù)y=f(x)的圖象經(jīng)過(guò)原點(diǎn),其導(dǎo)數(shù)為=6x-2.一次函數(shù)為y=g(x),且不等式g(x)>f(x)的解集為{x|<x<1},求f(x)和g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆山東省高一暑假作業(yè)(一)數(shù)學(xué)試卷(解析版) 題型:解答題

已知二次函數(shù)y=f(x)(x∈R)的圖像是一條開(kāi)口向下且對(duì)稱(chēng)軸為x=3的拋物線,試比較大。

(1)f(6)與f(4)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆湖南省高二上學(xué)期第一次階段性考試?yán)砜茢?shù)學(xué)試卷 題型:解答題

已知二次函數(shù)y=f(x)的圖像經(jīng)過(guò)坐標(biāo)原點(diǎn),其導(dǎo)函數(shù)為=6x-2,數(shù)列{}的前n項(xiàng)和為,點(diǎn)(n,)(n∈N*)均在函數(shù)y=f(x)的圖像上.(Ⅰ)求數(shù)列{}的通項(xiàng)公式;

(Ⅱ)設(shè)是數(shù)列{}的前n項(xiàng)和,求使得<對(duì)所有

n∈N*都成立的最小正整數(shù)m;

 

查看答案和解析>>

同步練習(xí)冊(cè)答案