已知向量a=(
3
sinωx,cosωx),b=(cosωx,-cosωx),(ω>0),函數(shù)f(x)=a•b+
1
2
的圖象的兩相鄰對(duì)稱軸間的距離為
π
4

(1)求ω值;
(2)若x∈(
7
24
π,
5
12
π)
時(shí),f(x)=-
3
5
,求cos4x的值;
(3)若cosx≥
1
2
,x∈(0,π),且f(x)=m有且僅有一個(gè)實(shí)根,求實(shí)數(shù)m的值.
由題意,f(x)=
3
sinωx•cosωx-cos2ωx+
1
2

=
3
2
sin2ωx-
1+cos2ωx
2
+
1
2

=
3
2
sin2ωx-
1
2
cos2ωx
=sin(2ωx-
π
6
)
,
(1)∵兩相鄰對(duì)稱軸間的距離為
π
4
,
T=
=
π
2
,
∴ω=2.

(2)由(1)得,f(x)=sin(4x-
π
6
)=-
3
5

x∈(
7
24π
,
5
12
)

4x-
π
6
∈(π,
3
2
π)
,
cos(4x-
π
6
)=-
4
5

cos4x=cos(4x-
π
6
+
π
6
)
=cos(4x-
π
6
)cos
π
6
-sin(4x-
π
6
)sin
π
6

=(-
4
5
3
2
-(-
3
5
1
2
=-
2
3
5
+
3
10


(3)∵cosx≥
1
2
,且余弦函數(shù)在(0,π)上是減函數(shù),
x∈(0,
π
3
]
,
f(x)=
a
b
+
1
2
=sin(4x-
π
6
)
,g(x)=m,在同一直角坐標(biāo)系中作出兩個(gè)函數(shù)的圖象,
可知m=1或m=-
1
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
3
sinωx,cosωx),
b
=( cosωx,cosωx),其中ω>0,記函數(shù)f(x)=
a
b
,若f(x)的最小正周期為π
(Ⅰ)求ω;
(Ⅱ)當(dāng)0<x≤
π
3
時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(3sin α,cos α),
b
=(2sin α,5sin α-4cos α),α∈(
2
,2π)
,且
a
b

(1)求tan α的值;
(2)求cos(
α
2
+
π
3
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
3
sinωx,cosωx),
b
=(cosωx,-cosωx),(ω>0),函數(shù)f(x)=
a
b
+
1
2
的圖象的兩相鄰對(duì)稱軸間的距離為
π
4

(1)求ω值;
(2)若x∈(
7
24
π,
5
12
π)
時(shí),f(x)=-
3
5
,求cos4x的值;
(3)若cosx≥
1
2
,x∈(0,π),且f(x)=m有且僅有一個(gè)實(shí)根,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
3
sinωx,cosωx),
b
=( cosωx,cosωx),其中ω>0,記函數(shù)f(x)=
a
b
-
1
2
已知f(x)的最小正周期為π.
(1)求ω;
(2)求f(x)的單調(diào)區(qū)間;對(duì)稱軸方程;對(duì)稱中心坐標(biāo);
(3)當(dāng)0<x≤
π
3
時(shí),試求f(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
3
sinωx,cosωx),
b
=(cosωx,3cosωx),ω>0,設(shè)f(x)=
a
b
,且f(x)的最小正周期為π.
(1)求ω的值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)函數(shù)f(x)的圖象可由函數(shù)y=sin2x經(jīng)過怎樣的變換得到.

查看答案和解析>>

同步練習(xí)冊(cè)答案