A.(-1,1) B.(-3,1) C.(-3,3) D.(-1,3)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(1)求點(diǎn)P的軌跡曲線C的方程;
(2)設(shè)曲線C與直線l:x+y=1相交于兩個(gè)不同的點(diǎn)A、B,求曲線C的離心率e的取值范圍;
(3)設(shè)曲線C與直線l:x+y=1相交于兩個(gè)不同的點(diǎn)A、B,O為坐標(biāo)原點(diǎn),且=-3,求a的值.
(文)(本小題滿分12分)設(shè)函數(shù)f(x)=x3+2ax2-3a2x+a(0<a<1).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x∈[a,2]時(shí),恒有f(x)≤0,試確定實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求點(diǎn)P的軌跡曲線C的方程;
(2)設(shè)曲線C與直線l:x+y=1相交于兩個(gè)不同的點(diǎn)A、B,求曲線C的離心率e的取值范圍;
(3)設(shè)曲線C與直線l:x+y=1相交于兩個(gè)不同的點(diǎn)A、B,O為坐標(biāo)原點(diǎn),且=-3,求a的值.
(文)設(shè)函數(shù)f(x)=x3+2ax2-3a2x+a(0<a<1).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x∈[a,2]時(shí),恒有f(x)≤0,試確定實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)若x1=-1,x2=2,求函數(shù)f(x)的解析式;
(2)若|x1|+|x2|=,求b的最大值;
(3)若x1<x<x2,且x2=a,函數(shù)g(x)=f′(x)-a(x-x1),求證:|g(x)|≤a(3a+2)2.
(文)如圖,N為圓x2+(y-2)2=4上的點(diǎn),OM為直徑,連結(jié)MN并延長交x軸于點(diǎn)C,過C引直線垂直于x軸,且與弦ON的延長線交于點(diǎn)D.
(1)已知點(diǎn)N(,1),求點(diǎn)D的坐標(biāo);
(2)若點(diǎn)N沿著圓周運(yùn)動(dòng),求點(diǎn)D的軌跡E的方程;
(3)設(shè)P(0,a)(a>0),Q是點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn),直線l過點(diǎn)P交曲線E于A、B兩點(diǎn),點(diǎn)H在射線QB上,且AH⊥PQ,求證:不論l繞點(diǎn)P怎樣轉(zhuǎn)動(dòng),恒有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求橢圓的方程;
(2)設(shè)直線l過F點(diǎn)(l不垂直坐標(biāo)軸),且與橢圓交于A、B兩點(diǎn),線段AB的垂直平分線交x軸于點(diǎn)M(m,0),試求m的取值范圍.
(文)某廠家擬在2006年舉行促銷活動(dòng),經(jīng)調(diào)查測算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)x萬件與年促銷費(fèi)用m萬元(m≥0)滿足x=3(k為常數(shù)),如果不搞促銷活動(dòng),則該產(chǎn)品的年銷售量只能是1萬件.已知2006年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金,不包括促銷費(fèi)用).
(1)將2006年該產(chǎn)品的利潤y萬元表示為年促銷費(fèi)用m萬元的函數(shù);
(2)該廠家2006年的促銷費(fèi)用投入多少萬元時(shí),廠家的利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性,證明你的結(jié)論;
(2)若當(dāng)x>0時(shí),f(x)>恒成立,求正整數(shù)k的最大值.(參考數(shù)據(jù):ln2≈0.7,ln3≈1.1)
(文) P1是橢圓+y2=1(a>0且a≠1)上不與頂點(diǎn)重合的任一點(diǎn),P1P2是垂直于x軸的弦,A1(-a,0),A2(a,0)是橢圓的兩個(gè)端點(diǎn),直線A1P1與直線A2P2交點(diǎn)為P.
(1)求P點(diǎn)的軌跡曲線C的方程;
(2)設(shè)曲線C與直線l:x+y=1相交于兩個(gè)不同的點(diǎn)A、B,求曲線C的離心率e的取值范圍;
(3)設(shè)曲線C與直線l:x+y=1相交于兩個(gè)不同的點(diǎn)A、B,O為坐標(biāo)原點(diǎn),且=-3,求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com